import numpy as np import argparse import csv import os import glob import datetime import time import logging import h5py import librosa from utilities import (create_folder, get_filename, create_logging, float32_to_int16, pad_or_truncate, read_metadata) import config def split_unbalanced_csv_to_partial_csvs(args): """Split unbalanced csv to part csvs. Each part csv contains up to 50000 ids. """ unbalanced_csv_path = args.unbalanced_csv unbalanced_partial_csvs_dir = args.unbalanced_partial_csvs_dir create_folder(unbalanced_partial_csvs_dir) with open(unbalanced_csv_path, 'r') as f: lines = f.readlines() lines = lines[3:] # Remove head info audios_num_per_file = 50000 files_num = int(np.ceil(len(lines) / float(audios_num_per_file))) for r in range(files_num): lines_per_file = lines[r * audios_num_per_file : (r + 1) * audios_num_per_file] out_csv_path = os.path.join(unbalanced_partial_csvs_dir, 'unbalanced_train_segments_part{:02d}.csv'.format(r)) with open(out_csv_path, 'w') as f: f.write('empty\n') f.write('empty\n') f.write('empty\n') for line in lines_per_file: f.write(line) print('Write out csv to {}'.format(out_csv_path)) def download_wavs(args): """Download videos and extract audio in wav format. """ # Paths csv_path = args.csv_path audios_dir = args.audios_dir mini_data = args.mini_data if mini_data: logs_dir = '_logs/download_dataset/{}'.format(get_filename(csv_path)) else: logs_dir = '_logs/download_dataset_minidata/{}'.format(get_filename(csv_path)) create_folder(audios_dir) create_folder(logs_dir) create_logging(logs_dir, filemode='w') logging.info('Download log is saved to {}'.format(logs_dir)) # Read csv with open(csv_path, 'r') as f: lines = f.readlines() lines = lines[3:] # Remove csv head info if mini_data: lines = lines[0 : 10] # Download partial data for debug download_time = time.time() # Download for (n, line) in enumerate(lines): items = line.split(', ') audio_id = items[0] start_time = float(items[1]) end_time = float(items[2]) duration = end_time - start_time logging.info('{} {} start_time: {:.1f}, end_time: {:.1f}'.format( n, audio_id, start_time, end_time)) # Download full video of whatever format video_name = os.path.join(audios_dir, '_Y{}.%(ext)s'.format(audio_id)) os.system("youtube-dl --quiet -o '{}' -x https://www.youtube.com/watch?v={}"\ .format(video_name, audio_id)) video_paths = glob.glob(os.path.join(audios_dir, '_Y' + audio_id + '.*')) # If download successful if len(video_paths) > 0: video_path = video_paths[0] # Choose one video # Add 'Y' to the head because some video ids are started with '-' # which will cause problem audio_path = os.path.join(audios_dir, 'Y' + audio_id + '.wav') # Extract audio in wav format os.system("ffmpeg -loglevel panic -i {} -ac 1 -ar 32000 -ss {} -t 00:00:{} {} "\ .format(video_path, str(datetime.timedelta(seconds=start_time)), duration, audio_path)) # Remove downloaded video os.system("rm {}".format(video_path)) logging.info("Download and convert to {}".format(audio_path)) logging.info('Download finished! Time spent: {:.3f} s'.format( time.time() - download_time)) logging.info('Logs can be viewed in {}'.format(logs_dir)) def pack_waveforms_to_hdf5(args): """Pack waveform and target of several audio clips to a single hdf5 file. This can speed up loading and training. """ # Arguments & parameters audios_dir = args.audios_dir csv_path = args.csv_path waveforms_hdf5_path = args.waveforms_hdf5_path mini_data = args.mini_data clip_samples = config.clip_samples classes_num = config.classes_num sample_rate = config.sample_rate id_to_ix = config.id_to_ix # Paths if mini_data: prefix = 'mini_' waveforms_hdf5_path += '.mini' else: prefix = '' create_folder(os.path.dirname(waveforms_hdf5_path)) logs_dir = '_logs/pack_waveforms_to_hdf5/{}{}'.format(prefix, get_filename(csv_path)) create_folder(logs_dir) create_logging(logs_dir, filemode='w') logging.info('Write logs to {}'.format(logs_dir)) # Read csv file meta_dict = read_metadata(csv_path, classes_num, id_to_ix) if mini_data: mini_num = 10 for key in meta_dict.keys(): meta_dict[key] = meta_dict[key][0 : mini_num] audios_num = len(meta_dict['audio_name']) # Pack waveform to hdf5 total_time = time.time() with h5py.File(waveforms_hdf5_path, 'w') as hf: hf.create_dataset('audio_name', shape=((audios_num,)), dtype='S20') hf.create_dataset('waveform', shape=((audios_num, clip_samples)), dtype=np.int16) hf.create_dataset('target', shape=((audios_num, classes_num)), dtype=np.bool) hf.attrs.create('sample_rate', data=sample_rate, dtype=np.int32) # Pack waveform & target of several audio clips to a single hdf5 file for n in range(audios_num): audio_path = os.path.join(audios_dir, meta_dict['audio_name'][n]) if os.path.isfile(audio_path): logging.info('{} {}'.format(n, audio_path)) (audio, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True) audio = pad_or_truncate(audio, clip_samples) hf['audio_name'][n] = meta_dict['audio_name'][n].encode() hf['waveform'][n] = float32_to_int16(audio) hf['target'][n] = meta_dict['target'][n] else: logging.info('{} File does not exist! {}'.format(n, audio_path)) logging.info('Write to {}'.format(waveforms_hdf5_path)) logging.info('Pack hdf5 time: {:.3f}'.format(time.time() - total_time)) if __name__ == '__main__': parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='mode') parser_split = subparsers.add_parser('split_unbalanced_csv_to_partial_csvs') parser_split.add_argument('--unbalanced_csv', type=str, required=True, help='Path of unbalanced_csv file to read.') parser_split.add_argument('--unbalanced_partial_csvs_dir', type=str, required=True, help='Directory to save out split unbalanced partial csv.') parser_download_wavs = subparsers.add_parser('download_wavs') parser_download_wavs.add_argument('--csv_path', type=str, required=True, help='Path of csv file containing audio info to be downloaded.') parser_download_wavs.add_argument('--audios_dir', type=str, required=True, help='Directory to save out downloaded audio.') parser_download_wavs.add_argument('--mini_data', action='store_true', default=True, help='Set true to only download 10 audios for debugging.') parser_pack_wavs = subparsers.add_parser('pack_waveforms_to_hdf5') parser_pack_wavs.add_argument('--csv_path', type=str, required=True, help='Path of csv file containing audio info to be downloaded.') parser_pack_wavs.add_argument('--audios_dir', type=str, required=True, help='Directory to save out downloaded audio.') parser_pack_wavs.add_argument('--waveforms_hdf5_path', type=str, required=True, help='Path to save out packed hdf5.') parser_pack_wavs.add_argument('--mini_data', action='store_true', default=False, help='Set true to only download 10 audios for debugging.') args = parser.parse_args() if args.mode == 'split_unbalanced_csv_to_partial_csvs': split_unbalanced_csv_to_partial_csvs(args) elif args.mode == 'download_wavs': download_wavs(args) elif args.mode == 'pack_waveforms_to_hdf5': pack_waveforms_to_hdf5(args) else: raise Exception('Incorrect arguments!')