Spaces:
Sleeping
Sleeping
File size: 7,149 Bytes
d8876d6 8288053 996b7d8 d8876d6 8d20888 8288053 ba707fb 942ad85 8d20888 8288053 e239e76 8288053 e239e76 d8876d6 8288053 d8876d6 8288053 d8876d6 8288053 d8876d6 8288053 d8876d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from PhantomNET import PhantomNet
import joblib
from transformers import AutoFeatureExtractor, Wav2Vec2Model
import torch
import librosa
import numpy as np
from sklearn.linear_model import LogisticRegression
import gradio as gr
import yt_dlp as youtube_dl
import os
class HuggingFaceFeatureExtractor:
def __init__(self, model_class, name):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.feature_extractor = AutoFeatureExtractor.from_pretrained(name)
self.model = model_class.from_pretrained(name, output_hidden_states=True)
self.model.eval()
self.model.to(self.device)
def __call__(self, audio, sr):
inputs = self.feature_extractor(
audio,
sampling_rate=sr,
return_tensors="pt",
padding=True,
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
return outputs.hidden_states[9], outputs.hidden_states[8], outputs.last_hidden_state
FEATURE_EXTRACTOR = {"wav2vec2-xls-r-2b": lambda: HuggingFaceFeatureExtractor(Wav2Vec2Model,
"facebook/wav2vec2-xls-r-2b")}
model1 = joblib.load('model1_ensemble.pkl')
model2 = joblib.load('model2_ensemble.pkl')
model3 = joblib.load('model3_ensemble.pkl')
model4 = joblib.load('model4_ensemble.pkl')
final_model = joblib.load('final_model_ensemble.pkl')
# def download_audio_from_youtube(youtube_url, output_path='.'):
# ydl_opts = {
# 'format': 'bestaudio/best',
# 'outtmpl': f'{output_path}/%(title)s.%(ext)s',
# 'postprocessors': [{
# 'key': 'FFmpegExtractAudio',
# 'preferredcodec': 'wav',
# 'preferredquality': '192',
# }],
# 'postprocessor_args': ['-ar', '16000'],
# 'prefer_ffmpeg': True,
# }
# with youtube_dl.YoutubeDL(ydl_opts) as ydl:
# info_dict = ydl.extract_info(youtube_url, download=True)
# #i have issues with the .webm extension, force replace with .wav
# audio_file = ydl.prepare_filename(info_dict).replace('.webm', '.wav')
# return audio_file
def download_audio_from_youtube(youtube_url, output_path='.', cookies_file='cookies.txt'):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': f'{output_path}/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
'postprocessor_args': ['-ar', '16000'],
'prefer_ffmpeg': True,
}
cookies_content = os.getenv('cookies')
with open('cookies.txt', 'w') as file:
file.write(cookies_content)
if cookies_file:
ydl_opts['cookiefile'] = cookies_file
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(youtube_url, download=True)
# force replace with .wav because webm is not supported by librosa
audio_file = ydl.prepare_filename(info_dict).replace('.webm', '.wav')
if os.path.exists('cookies.txt'):
os.remove('cookies.txt')
return audio_file
def segment_audio(audio, sr, segment_duration):
segment_samples = int(segment_duration * sr)
total_samples = len(audio)
segments = [audio[i:i + segment_samples] for i in range(0, total_samples, segment_samples)]
return segments
def classify_with_eer_threshold(probabilities, eer_thresh):
return (probabilities >= eer_thresh).astype(int)
def process_audio(input_data, segment_duration=3):
if input_data.startswith("http"):
file_audio = download_audio_from_youtube(input_data)
else:
file_audio = input_data
audio, sr = librosa.load(file_audio, sr=16000)
if len(audio.shape) > 1:
audio = audio[0]
segments = segment_audio(audio, sr, segment_duration)
all_embeddings_layer10 = []
all_embeddings_layer9 = []
all_embeddings_layer48 = []
# wav2vec2 extractor
a = FEATURE_EXTRACTOR['wav2vec2-xls-r-2b']()
for idx, segment in enumerate(segments):
p1, p2, p3 = a(segment, sr)
all_embeddings_layer10.append(p1)
all_embeddings_layer9.append(p2)
all_embeddings_layer48.append(p3)
embedding_layer10 = torch.cat(all_embeddings_layer10, dim=1)
embedding_layer9 = torch.cat(all_embeddings_layer9, dim=1)
embedding_layer48 = torch.cat(all_embeddings_layer48, dim=1)
wav2vec2_feature_layer10 = torch.mean(embedding_layer10, dim=1).cpu().numpy()
wav2vec2_feature_layer9 = torch.mean(embedding_layer9, dim=1).cpu().numpy()
wav2vec2_feature_layer48 = torch.mean(embedding_layer48, dim=1).cpu().numpy()
# PhantomNet extractor
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = PhantomNet(feature_size=1920, num_classes=2, conv_projection=False, use_mode='extractor').to(device)
state_dict = torch.load("PhantomNet_Finetuned_V2.pt", map_location=device)
model.load_state_dict(state_dict, strict=False)
model.eval()
all_embeddings_PhantomNet = []
for idx, segment in enumerate(segments):
segment_input = torch.Tensor(segment).unsqueeze(0).to(device)
p = model(segment_input).detach()
all_embeddings_PhantomNet.append(p)
embedding_PhantomNet = torch.cat(all_embeddings_PhantomNet, dim=1)
PhantomNet_feature = torch.mean(embedding_PhantomNet, dim=1)
wav2vec2_feature_layer9 = wav2vec2_feature_layer9.reshape(1, -1)
wav2vec2_feature_layer10 = wav2vec2_feature_layer10.reshape(1, -1)
wav2vec2_feature_layer48 = wav2vec2_feature_layer48.reshape(1, -1)
PhantomNet_feature = PhantomNet_feature.reshape(1, -1)
eval_prob1 = model1.predict_proba(wav2vec2_feature_layer10)[:, 1].reshape(-1, 1)
eval_prob2 = model2.predict_proba(wav2vec2_feature_layer9)[:, 1].reshape(-1, 1)
eval_prob3 = model3.predict_proba(wav2vec2_feature_layer48)[:, 1].reshape(-1, 1)
eval_prob4 = model4.predict_proba(PhantomNet_feature)[:, 1].reshape(-1, 1)
eval_combined_probs = np.hstack((eval_prob1, eval_prob2, eval_prob3, eval_prob4))
eer_thresh = 0.02 # eer during evaluation
final_prob = final_model.predict_proba(eval_combined_probs)[:, 1]
y_pred_inference = classify_with_eer_threshold(final_prob, eer_thresh)
if y_pred_inference == 1:
return f"Fake with a confidence of: {final_prob[0] * 100:.2f}%"
else:
return f"Real with a confidence of: {100 - final_prob[0] * 100:.2f}%"
def gradio_interface(audio, youtube_link):
if youtube_link:
return process_audio(youtube_link)
elif audio:
return process_audio(audio)
else:
return "please upload audio or provide a YouTube link."
interface = gr.Interface(
fn=gradio_interface,
inputs=[gr.Audio(type="filepath", label="Upload Audio"), gr.Textbox(label="YouTube Link (Optional)")],
outputs="text",
title="AI4TRUST Development",
description="Upload an audio file or provide a YouTube link to check if it's AI generated",
)
interface.launch(share=True)
|