AI4TRUST_space / app.py
DavidCombei's picture
Update app.py
e239e76 verified
raw
history blame
7.15 kB
from PhantomNET import PhantomNet
import joblib
from transformers import AutoFeatureExtractor, Wav2Vec2Model
import torch
import librosa
import numpy as np
from sklearn.linear_model import LogisticRegression
import gradio as gr
import yt_dlp as youtube_dl
import os
class HuggingFaceFeatureExtractor:
def __init__(self, model_class, name):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.feature_extractor = AutoFeatureExtractor.from_pretrained(name)
self.model = model_class.from_pretrained(name, output_hidden_states=True)
self.model.eval()
self.model.to(self.device)
def __call__(self, audio, sr):
inputs = self.feature_extractor(
audio,
sampling_rate=sr,
return_tensors="pt",
padding=True,
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
return outputs.hidden_states[9], outputs.hidden_states[8], outputs.last_hidden_state
FEATURE_EXTRACTOR = {"wav2vec2-xls-r-2b": lambda: HuggingFaceFeatureExtractor(Wav2Vec2Model,
"facebook/wav2vec2-xls-r-2b")}
model1 = joblib.load('model1_ensemble.pkl')
model2 = joblib.load('model2_ensemble.pkl')
model3 = joblib.load('model3_ensemble.pkl')
model4 = joblib.load('model4_ensemble.pkl')
final_model = joblib.load('final_model_ensemble.pkl')
# def download_audio_from_youtube(youtube_url, output_path='.'):
# ydl_opts = {
# 'format': 'bestaudio/best',
# 'outtmpl': f'{output_path}/%(title)s.%(ext)s',
# 'postprocessors': [{
# 'key': 'FFmpegExtractAudio',
# 'preferredcodec': 'wav',
# 'preferredquality': '192',
# }],
# 'postprocessor_args': ['-ar', '16000'],
# 'prefer_ffmpeg': True,
# }
# with youtube_dl.YoutubeDL(ydl_opts) as ydl:
# info_dict = ydl.extract_info(youtube_url, download=True)
# #i have issues with the .webm extension, force replace with .wav
# audio_file = ydl.prepare_filename(info_dict).replace('.webm', '.wav')
# return audio_file
def download_audio_from_youtube(youtube_url, output_path='.', cookies_file='cookies.txt'):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': f'{output_path}/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
'postprocessor_args': ['-ar', '16000'],
'prefer_ffmpeg': True,
}
cookies_content = os.getenv('cookies')
with open('cookies.txt', 'w') as file:
file.write(cookies_content)
if cookies_file:
ydl_opts['cookiefile'] = cookies_file
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(youtube_url, download=True)
# force replace with .wav because webm is not supported by librosa
audio_file = ydl.prepare_filename(info_dict).replace('.webm', '.wav')
if os.path.exists('cookies.txt'):
os.remove('cookies.txt')
return audio_file
def segment_audio(audio, sr, segment_duration):
segment_samples = int(segment_duration * sr)
total_samples = len(audio)
segments = [audio[i:i + segment_samples] for i in range(0, total_samples, segment_samples)]
return segments
def classify_with_eer_threshold(probabilities, eer_thresh):
return (probabilities >= eer_thresh).astype(int)
def process_audio(input_data, segment_duration=3):
if input_data.startswith("http"):
file_audio = download_audio_from_youtube(input_data)
else:
file_audio = input_data
audio, sr = librosa.load(file_audio, sr=16000)
if len(audio.shape) > 1:
audio = audio[0]
segments = segment_audio(audio, sr, segment_duration)
all_embeddings_layer10 = []
all_embeddings_layer9 = []
all_embeddings_layer48 = []
# wav2vec2 extractor
a = FEATURE_EXTRACTOR['wav2vec2-xls-r-2b']()
for idx, segment in enumerate(segments):
p1, p2, p3 = a(segment, sr)
all_embeddings_layer10.append(p1)
all_embeddings_layer9.append(p2)
all_embeddings_layer48.append(p3)
embedding_layer10 = torch.cat(all_embeddings_layer10, dim=1)
embedding_layer9 = torch.cat(all_embeddings_layer9, dim=1)
embedding_layer48 = torch.cat(all_embeddings_layer48, dim=1)
wav2vec2_feature_layer10 = torch.mean(embedding_layer10, dim=1).cpu().numpy()
wav2vec2_feature_layer9 = torch.mean(embedding_layer9, dim=1).cpu().numpy()
wav2vec2_feature_layer48 = torch.mean(embedding_layer48, dim=1).cpu().numpy()
# PhantomNet extractor
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = PhantomNet(feature_size=1920, num_classes=2, conv_projection=False, use_mode='extractor').to(device)
state_dict = torch.load("PhantomNet_Finetuned_V2.pt", map_location=device)
model.load_state_dict(state_dict, strict=False)
model.eval()
all_embeddings_PhantomNet = []
for idx, segment in enumerate(segments):
segment_input = torch.Tensor(segment).unsqueeze(0).to(device)
p = model(segment_input).detach()
all_embeddings_PhantomNet.append(p)
embedding_PhantomNet = torch.cat(all_embeddings_PhantomNet, dim=1)
PhantomNet_feature = torch.mean(embedding_PhantomNet, dim=1)
wav2vec2_feature_layer9 = wav2vec2_feature_layer9.reshape(1, -1)
wav2vec2_feature_layer10 = wav2vec2_feature_layer10.reshape(1, -1)
wav2vec2_feature_layer48 = wav2vec2_feature_layer48.reshape(1, -1)
PhantomNet_feature = PhantomNet_feature.reshape(1, -1)
eval_prob1 = model1.predict_proba(wav2vec2_feature_layer10)[:, 1].reshape(-1, 1)
eval_prob2 = model2.predict_proba(wav2vec2_feature_layer9)[:, 1].reshape(-1, 1)
eval_prob3 = model3.predict_proba(wav2vec2_feature_layer48)[:, 1].reshape(-1, 1)
eval_prob4 = model4.predict_proba(PhantomNet_feature)[:, 1].reshape(-1, 1)
eval_combined_probs = np.hstack((eval_prob1, eval_prob2, eval_prob3, eval_prob4))
eer_thresh = 0.02 # eer during evaluation
final_prob = final_model.predict_proba(eval_combined_probs)[:, 1]
y_pred_inference = classify_with_eer_threshold(final_prob, eer_thresh)
if y_pred_inference == 1:
return f"Fake with a confidence of: {final_prob[0] * 100:.2f}%"
else:
return f"Real with a confidence of: {100 - final_prob[0] * 100:.2f}%"
def gradio_interface(audio, youtube_link):
if youtube_link:
return process_audio(youtube_link)
elif audio:
return process_audio(audio)
else:
return "please upload audio or provide a YouTube link."
interface = gr.Interface(
fn=gradio_interface,
inputs=[gr.Audio(type="filepath", label="Upload Audio"), gr.Textbox(label="YouTube Link (Optional)")],
outputs="text",
title="AI4TRUST Development",
description="Upload an audio file or provide a YouTube link to check if it's AI generated",
)
interface.launch(share=True)