Spaces:
Running
Running
import torch | |
from torchvision import transforms, models | |
from PIL import Image | |
import gradio as gr | |
import os | |
# Use CPU | |
device = torch.device('cpu') | |
# Define ResNet-50 Architecture | |
model = models.resnet50(weights=None) | |
# Revise fully connected layer to output 37 classes (num_classes = 37) | |
model.fc = torch.nn.Linear(2048, 37) | |
# Load Model weights | |
model.load_state_dict(torch.load('./resnet50_model_weights.pth', map_location=device)) | |
model.eval() | |
# Transformation for the input image | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
# List of class names (37 dog and cat breeds) | |
class_names = ['Abyssinian (阿比西尼亞貓)', 'American Bulldog (美國鬥牛犬)', 'American Pit Bull Terrier (美國比特鬥牛梗)', | |
'Basset Hound (巴吉度獵犬)', 'Beagle (米格魯)', 'Bengal (孟加拉貓)', 'Birman (緬甸貓)', 'Bombay (孟買貓)', | |
'Boxer (拳師犬)', 'British Shorthair (英國短毛貓)', 'Chihuahua (吉娃娃)', 'Egyptian Mau (埃及貓)', | |
'English Cocker Spaniel (英國可卡犬)', 'English Setter (英國設得蘭犬)', 'German Shorthaired (德國短毛犬)', | |
'Great Pyrenees (大白熊犬)', 'Havanese (哈瓦那犬)', 'Japanese Chin (日本狆)', 'Keeshond (荷蘭毛獅犬)', | |
'Leonberger (萊昂貝格犬)', 'Maine Coon (緬因貓)', 'Miniature Pinscher (迷你品犬)', 'Newfoundland (紐芬蘭犬)', | |
'Persian (波斯貓)', 'Pomeranian (博美犬)', 'Pug (哈巴狗)', 'Ragdoll (布偶貓)', 'Russian Blue (俄羅斯藍貓)', | |
'Saint Bernard (聖伯納犬)', 'Samoyed (薩摩耶)', 'Scottish Terrier (蘇格蘭梗)', 'Shiba Inu (柴犬)', | |
'Siamese (暹羅貓)', 'Sphynx (無毛貓)', 'Staffordshire Bull Terrier (史塔福郡鬥牛犬)', | |
'Wheaten Terrier (小麥色梗)', 'Yorkshire Terrier (約克夏犬)'] | |
# Prediction function | |
def classify_image(image): | |
# Apply transformation and add batch dimension | |
image = transform(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
# Make predictions using the model | |
outputs = model(image) | |
# Apply softmax to get probabilities | |
probabilities = torch.nn.functional.softmax(outputs, dim=1) | |
# Get the top 3 predictions | |
probabilities, indices = torch.topk(probabilities, k=3) | |
# Return the class names with their corresponding probabilities | |
predictions = [(class_names[idx], prob.item()) for idx, prob in zip(indices[0], probabilities[0])] | |
return {class_name: prob for class_name, prob in predictions} # Return raw float numbers # Return formatted percentages | |
# Path to the folder containing example images | |
examples_path = './examples' | |
# Check if the example images folder exists | |
if os.path.exists(examples_path): | |
print(f"[INFO] Found examples folder at {examples_path}") | |
else: | |
print(f"[ERROR] Examples folder not found at {examples_path}") | |
# Gradio interface | |
# Load example images from the folder | |
examples = [[examples_path + "/" + img] for img in os.listdir(examples_path)] | |
# Create dropdown menu for users to see available classes (as reference, no direct connection to prediction) | |
dropdown = gr.Dropdown(choices=class_names, label="Recognizable Breeds", type="value") | |
# Use `gr.Blocks()` to define the full interface | |
with gr.Blocks() as demo_with_dropdown: | |
# Display markdown heading | |
gr.Markdown("# Oxford Pet 🐕🐈 Recognizable Breeds") | |
# Dropdown as a reference for users | |
dropdown | |
# Image classification demo | |
gr.Image(label="Upload an image to classify", scale=0.5) | |
# Gradio interface for the image input and label output | |
gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), # Only image input is used for prediction | |
outputs=gr.Label(num_top_classes=3, label="Top 3 Predictions"), # Outputs top 3 predictions with probabilities | |
examples=examples, | |
title='Oxford Pet 🐈🐕', | |
description='A ResNet50-based model for classifying 37 different pet breeds.', | |
article='[Oxford Project](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project)' | |
) | |
# Launch Gradio app | |
demo_with_dropdown.launch() |