Spaces:
Running
Running
Upload 5 files
Browse filesUpload needed files
British_Shorthair(/350/213/261/345/234/213/347/237/255/346/257/233/350/262/223).jpg
ADDED
Samoyed(/350/226/251/346/221/251/350/200/266).jpg
ADDED
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
from torchvision import models
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Use CPU
|
9 |
+
device = torch.device('cpu')
|
10 |
+
|
11 |
+
# Load the model ResNet-50 model architecture
|
12 |
+
model = models.resnet50(pretrained=False)
|
13 |
+
|
14 |
+
# Load model's weight to CPU
|
15 |
+
model = torch.load('resnet50_model_weights.pth', map_location=device)
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
# Define the image preprocessing
|
19 |
+
transform = transforms.Compose([
|
20 |
+
transforms.Resize((224, 224)),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
23 |
+
])
|
24 |
+
|
25 |
+
# Define the class names
|
26 |
+
class_names = ['Abyssinian', 'American Bulldog', 'American Pit Bull Terrier', 'Basset Hound', 'Beagle', 'Bengal', 'Birman', 'Bombay',
|
27 |
+
'Boxer', 'British Shorthair', 'Chihuahua', 'Egyptian Mau', 'English Cocker Spaniel', 'English Setter', 'German Shorthaired',
|
28 |
+
'Great Pyrenees', 'Havanese', 'Japanese Chin', 'Keeshond', 'Leonberger', 'Maine Coon', 'Miniature Pinscher', 'Newfoundland',
|
29 |
+
'Persian', 'Pomeranian', 'Pug', 'Ragdoll', 'Russian Blue', 'Saint Bernard', 'Samoyed', 'Scottish Terrier', 'Shiba Inu',
|
30 |
+
'Siamese', 'Sphynx', 'Staffordshire Bull Terrier', 'Wheaten Terrier', 'Yorkshire Terrier']
|
31 |
+
|
32 |
+
# Define the predict function
|
33 |
+
def classify_image(image):
|
34 |
+
image = transform(image).unsqueeze(0).to(device) # Ensure image data is processed on CPU
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs = model(image)
|
37 |
+
_, predicted = torch.max(outputs, 1)
|
38 |
+
return class_names[predicted.item()]
|
39 |
+
|
40 |
+
# Custom Gradio interface title, description, and article
|
41 |
+
title = 'Oxford Pet ππ'
|
42 |
+
description = 'A ResNet50-based computer vision model for classifying images of pets from the Oxford-IIIT Pet Dataset. The model can recognize 37 different pet breeds, including cats and dogs.'
|
43 |
+
article = 'https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project'
|
44 |
+
|
45 |
+
# Gradio interface
|
46 |
+
examples = [["examples/" + img] for img in os.listdir('examples')]
|
47 |
+
|
48 |
+
demo = gr.Interface(fn=classify_image, # Map input to output function
|
49 |
+
inputs=gr.Image(type="pil"), # Image input
|
50 |
+
outputs=[gr.Label(num_top_classes=1, label="Predictions")], # Predicted label
|
51 |
+
examples=examples, # Example images
|
52 |
+
title=title,
|
53 |
+
description=description,
|
54 |
+
article=article)
|
55 |
+
|
56 |
+
# Launch the demo
|
57 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.3.0
|
2 |
+
torchvision==0.18.0
|
3 |
+
gradio==4.42.0
|
4 |
+
Pillow==9.2.0
|
resnet50_model_weights.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa799a82adff86b3fe384f7b86e925d75e8f434255cff9464b2ceeeec1cd5b69
|
3 |
+
size 94657902
|