Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,12 +13,10 @@ model = models.resnet50(weights=None)
|
|
13 |
# Revise fully connected layer to output 37 classes (num_classes = 37)
|
14 |
model.fc = torch.nn.Linear(2048, 37)
|
15 |
|
16 |
-
# Load Model weights
|
17 |
model.load_state_dict(torch.load('./resnet50_model_weights.pth', map_location=device))
|
18 |
|
19 |
model.eval()
|
20 |
|
21 |
-
# Transformation for the input image
|
22 |
transform = transforms.Compose([
|
23 |
transforms.Resize((224, 224)),
|
24 |
transforms.ToTensor(),
|
@@ -50,7 +48,7 @@ def classify_image(image):
|
|
50 |
probabilities, indices = torch.topk(probabilities, k=3)
|
51 |
# Return the class names with their corresponding probabilities
|
52 |
predictions = [(class_names[idx], prob.item()) for idx, prob in zip(indices[0], probabilities[0])]
|
53 |
-
return {class_name: prob for class_name, prob in predictions} # Return raw float numbers
|
54 |
|
55 |
# Path to the folder containing example images
|
56 |
examples_path = './examples'
|
@@ -61,34 +59,23 @@ if os.path.exists(examples_path):
|
|
61 |
else:
|
62 |
print(f"[ERROR] Examples folder not found at {examples_path}")
|
63 |
|
64 |
-
# Gradio interface
|
65 |
# Load example images from the folder
|
66 |
examples = [[examples_path + "/" + img] for img in os.listdir(examples_path)]
|
67 |
|
68 |
# Create dropdown menu for users to see available classes (as reference, no direct connection to prediction)
|
69 |
dropdown = gr.Dropdown(choices=class_names, label="Recognizable Breeds", type="value")
|
70 |
|
71 |
-
#
|
72 |
with gr.Blocks() as demo_with_dropdown:
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
# Dropdown as a reference for users
|
77 |
-
dropdown
|
78 |
-
|
79 |
-
# Image classification demo
|
80 |
-
gr.Image(label="Upload an image to classify", scale=0.5)
|
81 |
-
|
82 |
-
# Gradio interface for the image input and label output
|
83 |
-
gr.Interface(
|
84 |
fn=classify_image,
|
85 |
-
inputs=gr.Image(type="pil"), #
|
86 |
-
outputs=gr.Label(num_top_classes=3, label="Top 3 Predictions"), #
|
87 |
examples=examples,
|
88 |
title='Oxford Pet ๐๐',
|
89 |
description='A ResNet50-based model for classifying 37 different pet breeds.',
|
90 |
article='[Oxford Project](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project)'
|
91 |
)
|
92 |
-
|
93 |
-
# Launch Gradio app
|
94 |
-
demo_with_dropdown.launch()
|
|
|
13 |
# Revise fully connected layer to output 37 classes (num_classes = 37)
|
14 |
model.fc = torch.nn.Linear(2048, 37)
|
15 |
|
|
|
16 |
model.load_state_dict(torch.load('./resnet50_model_weights.pth', map_location=device))
|
17 |
|
18 |
model.eval()
|
19 |
|
|
|
20 |
transform = transforms.Compose([
|
21 |
transforms.Resize((224, 224)),
|
22 |
transforms.ToTensor(),
|
|
|
48 |
probabilities, indices = torch.topk(probabilities, k=3)
|
49 |
# Return the class names with their corresponding probabilities
|
50 |
predictions = [(class_names[idx], prob.item()) for idx, prob in zip(indices[0], probabilities[0])]
|
51 |
+
return {class_name: prob for class_name, prob in predictions} # Return raw float numbers
|
52 |
|
53 |
# Path to the folder containing example images
|
54 |
examples_path = './examples'
|
|
|
59 |
else:
|
60 |
print(f"[ERROR] Examples folder not found at {examples_path}")
|
61 |
|
|
|
62 |
# Load example images from the folder
|
63 |
examples = [[examples_path + "/" + img] for img in os.listdir(examples_path)]
|
64 |
|
65 |
# Create dropdown menu for users to see available classes (as reference, no direct connection to prediction)
|
66 |
dropdown = gr.Dropdown(choices=class_names, label="Recognizable Breeds", type="value")
|
67 |
|
68 |
+
# Define Gradio Interface
|
69 |
with gr.Blocks() as demo_with_dropdown:
|
70 |
+
gr.Markdown("# Oxford Pet ๐พ Recognizable Breeds")
|
71 |
+
dropdown # ้กฏ็คบไธๆ้ธๅฎ
|
72 |
+
demo = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
fn=classify_image,
|
74 |
+
inputs=gr.Image(type="pil"), # ๅชไฝฟ็จๅ็่ผธๅ
ฅ้ฒ่ก้ ๆธฌ
|
75 |
+
outputs=gr.Label(num_top_classes=3, label="Top 3 Predictions"), # ่ผธๅบๅไธๅ้ ๆธฌ
|
76 |
examples=examples,
|
77 |
title='Oxford Pet ๐๐',
|
78 |
description='A ResNet50-based model for classifying 37 different pet breeds.',
|
79 |
article='[Oxford Project](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project)'
|
80 |
)
|
81 |
+
demo.launch()
|
|
|
|