Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,080 Bytes
2c41ede 0ef1e7a b4e520b 0ef1e7a c648d0c 0ef1e7a c648d0c 0ef1e7a c648d0c 0ef1e7a c648d0c 0ef1e7a c648d0c 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a b4e520b 0ef1e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
@dataclass
class UserPreferences:
"""使用者偏好設定的資料結構"""
living_space: str # "apartment", "house_small", "house_large"
yard_access: str # "no_yard", "shared_yard", "private_yard"
exercise_time: int # minutes per day
exercise_type: str # "light_walks", "moderate_activity", "active_training"
grooming_commitment: str # "low", "medium", "high"
experience_level: str # "beginner", "intermediate", "advanced"
time_availability: str # "limited", "moderate", "flexible"
has_children: bool
children_age: str # "toddler", "school_age", "teenager"
noise_tolerance: str # "low", "medium", "high"
space_for_play: bool
other_pets: bool
climate: str # "cold", "moderate", "hot"
health_sensitivity: str = "medium"
barking_acceptance: str = None
def __post_init__(self):
"""在初始化後運行,用於設置派生值"""
if self.barking_acceptance is None:
self.barking_acceptance = self.noise_tolerance
@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
"""計算品種額外加分"""
bonus = 0.0
temperament = breed_info.get('Temperament', '').lower()
# 1. 壽命加分(最高0.05)
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
bonus += longevity_bonus
except:
pass
# 2. 性格特徵加分(最高0.15)
positive_traits = {
'friendly': 0.05,
'gentle': 0.05,
'patient': 0.05,
'intelligent': 0.04,
'adaptable': 0.04,
'affectionate': 0.04,
'easy-going': 0.03,
'calm': 0.03
}
negative_traits = {
'aggressive': -0.08,
'stubborn': -0.06,
'dominant': -0.06,
'aloof': -0.04,
'nervous': -0.05,
'protective': -0.04
}
personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
bonus += max(-0.15, min(0.15, personality_score))
# 3. 適應性加分(最高0.1)
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.05
if 'adaptable' in temperament or 'versatile' in temperament:
adaptability_bonus += 0.05
bonus += min(0.1, adaptability_bonus)
# 4. 家庭相容性(最高0.1)
if user_prefs.has_children:
family_traits = {
'good with children': 0.06,
'patient': 0.05,
'gentle': 0.05,
'tolerant': 0.04,
'playful': 0.03
}
unfriendly_traits = {
'aggressive': -0.08,
'nervous': -0.07,
'protective': -0.06,
'territorial': -0.05
}
# 年齡評估這樣能更細緻
age_adjustments = {
'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
}
adj = age_adjustments.get(user_prefs.children_age,
{'bonus_mult': 1.0, 'penalty_mult': 1.0})
family_bonus = sum(value for trait, value in family_traits.items()
if trait in temperament) * adj['bonus_mult']
family_penalty = sum(value for trait, value in unfriendly_traits.items()
if trait in temperament) * adj['penalty_mult']
bonus += min(0.15, max(-0.2, family_bonus + family_penalty))
# 5. 專門技能加分(最高0.1)
skill_bonus = 0.0
special_abilities = {
'working': 0.03,
'herding': 0.03,
'hunting': 0.03,
'tracking': 0.03,
'agility': 0.02
}
for ability, value in special_abilities.items():
if ability in temperament.lower():
skill_bonus += value
bonus += min(0.1, skill_bonus)
return min(0.5, max(-0.25, bonus))
@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
"""計算額外的評估因素"""
factors = {
'versatility': 0.0, # 多功能性
'trainability': 0.0, # 可訓練度
'energy_level': 0.0, # 能量水平
'grooming_needs': 0.0, # 美容需求
'social_needs': 0.0, # 社交需求
'weather_adaptability': 0.0 # 氣候適應性
}
temperament = breed_info.get('Temperament', '').lower()
size = breed_info.get('Size', 'Medium')
# 1. 多功能性評估
versatile_traits = ['intelligent', 'adaptable', 'trainable', 'athletic']
working_roles = ['working', 'herding', 'hunting', 'sporting', 'companion']
trait_score = sum(0.2 for trait in versatile_traits if trait in temperament)
role_score = sum(0.2 for role in working_roles if role in breed_info.get('Description', '').lower())
factors['versatility'] = min(1.0, trait_score + role_score)
# 2. 可訓練度評估
trainable_traits = {
'intelligent': 0.3,
'eager to please': 0.3,
'trainable': 0.2,
'quick learner': 0.2
}
factors['trainability'] = min(1.0, sum(value for trait, value in trainable_traits.items()
if trait in temperament))
# 3. 能量水平評估
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
energy_levels = {
'VERY HIGH': 1.0,
'HIGH': 0.8,
'MODERATE': 0.6,
'LOW': 0.4,
'VARIES': 0.6
}
factors['energy_level'] = energy_levels.get(exercise_needs, 0.6)
# 4. 美容需求評估
grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
grooming_levels = {
'HIGH': 1.0,
'MODERATE': 0.6,
'LOW': 0.3
}
coat_penalty = 0.2 if any(term in breed_info.get('Description', '').lower()
for term in ['long coat', 'double coat']) else 0
factors['grooming_needs'] = min(1.0, grooming_levels.get(grooming_needs, 0.6) + coat_penalty)
# 5. 社交需求評估
social_traits = ['friendly', 'social', 'affectionate', 'people-oriented']
antisocial_traits = ['independent', 'aloof', 'reserved']
social_score = sum(0.25 for trait in social_traits if trait in temperament)
antisocial_score = sum(-0.2 for trait in antisocial_traits if trait in temperament)
factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
# 6. 氣候適應性評估
climate_terms = {
'cold': ['thick coat', 'winter', 'cold climate'],
'hot': ['short coat', 'warm climate', 'heat tolerant'],
'moderate': ['adaptable', 'all climate']
}
climate_matches = sum(1 for term in climate_terms[user_prefs.climate]
if term in breed_info.get('Description', '').lower())
factors['weather_adaptability'] = min(1.0, climate_matches * 0.3 + 0.4) # 基礎分0.4
return factors
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
"""計算品種與使用者條件的相容性分數的優化版本"""
try:
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
"""空間分數計算"""
# 基礎空間需求矩陣
base_scores = {
"Small": {"apartment": 0.95, "house_small": 1.0, "house_large": 0.90},
"Medium": {"apartment": 0.60, "house_small": 0.90, "house_large": 1.0},
"Large": {"apartment": 0.30, "house_small": 0.75, "house_large": 1.0},
"Giant": {"apartment": 0.15, "house_small": 0.55, "house_large": 1.0}
}
# 取得基礎分數
base_score = base_scores.get(size, base_scores["Medium"])[living_space]
# 運動需求調整
exercise_adjustments = {
"Very High": -0.15 if living_space == "apartment" else 0,
"High": -0.10 if living_space == "apartment" else 0,
"Moderate": 0,
"Low": 0.05 if living_space == "apartment" else 0
}
adjustments = exercise_adjustments.get(exercise_needs.strip(), 0)
# 院子獎勵
if has_yard and size in ["Large", "Giant"]:
adjustments += 0.10
elif has_yard:
adjustments += 0.05
return min(1.0, max(0.1, base_score + adjustments))
def calculate_exercise_score(breed_needs: str, user_time: int) -> float:
"""運動需求計算"""
# 更精確的運動需求定義
exercise_needs = {
'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180},
'HIGH': {'min': 90, 'ideal': 120, 'max': 150},
'MODERATE': {'min': 45, 'ideal': 60, 'max': 90},
'LOW': {'min': 20, 'ideal': 30, 'max': 45},
'VARIES': {'min': 30, 'ideal': 60, 'max': 90}
}
breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE'])
# 計算匹配度
if user_time >= breed_need['ideal']:
if user_time > breed_need['max']:
return 0.9 # 稍微降分,因為可能過度運動
return 1.0
elif user_time >= breed_need['min']:
return 0.8 + (user_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.2
else:
return max(0.3, 0.8 * (user_time / breed_need['min']))
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
"""美容需求計算"""
# 基礎分數矩陣
base_scores = {
"High": {"low": 0.3, "medium": 0.7, "high": 1.0},
"Moderate": {"low": 0.5, "medium": 0.9, "high": 1.0},
"Low": {"low": 1.0, "medium": 0.95, "high": 0.8}
}
# 取得基礎分數
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
# 體型影響調整
size_adjustments = {
"Large": {"low": -0.2, "medium": -0.1, "high": 0},
"Giant": {"low": -0.3, "medium": -0.15, "high": 0},
}
if breed_size in size_adjustments:
adjustment = size_adjustments[breed_size].get(user_commitment, 0)
base_score = max(0.2, base_score + adjustment)
return base_score
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
"""飼養經驗需求計算"""
# 降低初學者的基礎分數
base_scores = {
"High": {"beginner": 0.15, "intermediate": 0.70, "advanced": 1.0},
"Moderate": {"beginner": 0.40, "intermediate": 0.85, "advanced": 1.0},
"Low": {"beginner": 0.75, "intermediate": 0.95, "advanced": 1.0}
}
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
# 擴展性格特徵評估
temperament_lower = temperament.lower()
if user_experience == "beginner":
# 增加更多特徵評估
difficult_traits = {
'stubborn': -0.12,
'independent': -0.10,
'dominant': -0.10,
'strong-willed': -0.08,
'protective': -0.06,
'energetic': -0.05
}
easy_traits = {
'gentle': 0.06,
'friendly': 0.06,
'eager to please': 0.06,
'patient': 0.05,
'adaptable': 0.05,
'calm': 0.04
}
# 更精確的特徵影響計算
temperament_adjustments = sum(value for trait, value in easy_traits.items() if trait in temperament_lower)
temperament_adjustments += sum(value for trait, value in difficult_traits.items() if trait in temperament_lower)
# 品種特定調整
if "terrier" in breed_info['Description'].lower():
temperament_adjustments -= 0.1 # 梗類犬對新手不友善
final_score = max(0.2, min(1.0, score + temperament_adjustments))
return final_score
def calculate_health_score(breed_name: str) -> float:
"""計算品種健康分數"""
if breed_name not in breed_health_info:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題(降低0.15分)
severe_conditions = [
'hip dysplasia',
'heart disease',
'progressive retinal atrophy',
'bloat',
'epilepsy',
'degenerative myelopathy',
'von willebrand disease'
]
# 中度健康問題(降低0.1分)
moderate_conditions = [
'allergies',
'eye problems',
'joint problems',
'hypothyroidism',
'ear infections',
'skin issues'
]
# 輕微健康問題(降低0.05分)
minor_conditions = [
'dental issues',
'weight gain tendency',
'minor allergies',
'seasonal allergies'
]
# 計算基礎健康分數
health_score = 1.0
# 根據問題嚴重程度扣分
severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
minor_count = sum(1 for condition in minor_conditions if condition in health_notes)
health_score -= (severe_count * 0.15)
health_score -= (moderate_count * 0.1)
health_score -= (minor_count * 0.05)
# 壽命影響
try:
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
years = float(lifespan.split('-')[0])
if years < 8:
health_score *= 0.9
elif years > 13:
health_score *= 1.1
except:
pass
# 特殊健康優勢
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
health_score *= 1.1
return max(0.2, min(1.0, health_score))
def calculate_noise_score(breed_name: str, user_noise_tolerance: str) -> float:
"""計算品種噪音分數"""
if breed_name not in breed_noise_info:
return 0.5
noise_info = breed_noise_info[breed_name]
noise_level = noise_info['noise_level'].lower()
noise_notes = noise_info['noise_notes'].lower()
# 基礎噪音分數矩陣
base_scores = {
'low': {'low': 1.0, 'medium': 0.9, 'high': 0.8},
'medium': {'low': 0.7, 'medium': 1.0, 'high': 0.9},
'high': {'low': 0.4, 'medium': 0.7, 'high': 1.0},
'varies': {'low': 0.6, 'medium': 0.8, 'high': 0.9}
}
# 獲取基礎分數
base_score = base_scores.get(noise_level, {'low': 0.7, 'medium': 0.8, 'high': 0.6})[user_noise_tolerance]
# 吠叫原因評估
barking_reasons_penalty = 0
problematic_triggers = [
('separation anxiety', -0.15),
('excessive barking', -0.12),
('territorial', -0.08),
('alert barking', -0.05),
('attention seeking', -0.05)
]
for trigger, penalty in problematic_triggers:
if trigger in noise_notes:
barking_reasons_penalty += penalty
# 可訓練性補償
trainability_bonus = 0
if 'responds well to training' in noise_notes:
trainability_bonus = 0.1
elif 'can be trained' in noise_notes:
trainability_bonus = 0.05
# 特殊情況
special_adjustments = 0
if 'rarely barks' in noise_notes:
special_adjustments += 0.1
if 'howls' in noise_notes and user_noise_tolerance == 'low':
special_adjustments -= 0.1
final_score = base_score + barking_reasons_penalty + trainability_bonus + special_adjustments
return max(0.2, min(1.0, final_score))
# 計算所有基礎分數
scores = {
'space': calculate_space_score(
breed_info['Size'],
user_prefs.living_space,
user_prefs.space_for_play,
breed_info.get('Exercise Needs', 'Moderate')
),
'exercise': calculate_exercise_score(
breed_info.get('Exercise Needs', 'Moderate'),
user_prefs.exercise_time
),
'grooming': calculate_grooming_score(
breed_info.get('Grooming Needs', 'Moderate'),
user_prefs.grooming_commitment.lower(),
breed_info['Size']
),
'experience': calculate_experience_score(
breed_info.get('Care Level', 'Moderate'),
user_prefs.experience_level,
breed_info.get('Temperament', '')
),
'health': calculate_health_score(breed_info.get('Breed', '')),
'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
}
# 優化權重配置
weights = {
'space': 0.28,
'exercise': 0.18,
'grooming': 0.12,
'experience': 0.22,
'health': 0.12,
'noise': 0.08
}
# 計算加權總分
weighted_score = sum(score * weights[category] for category, score in scores.items())
# 擴大分數差異
def amplify_score(score):
# 使用指數函數擴大差異
amplified = pow((score - 0.5) * 2, 3) / 8 + score
return max(0.65, min(0.95, amplified)) # 限制在65%-95%範圍內
final_score = amplify_score(weighted_score)
# 四捨五入所有分數
scores = {k: round(v, 4) for k, v in scores.items()}
scores['overall'] = round(final_score, 4)
return scores
except Exception as e:
print(f"Error in calculate_compatibility_score: {str(e)}")
return {k: 0.5 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|