Spaces:
Running
on
Zero
Running
on
Zero
File size: 40,534 Bytes
0ef1e7a b7e8045 0ef1e7a adf9a2f 6895e9a 0381173 0ef1e7a 78f7931 fb964b2 78f7931 310e4e2 e398dfd 1b921c8 0ef1e7a b7e8045 0ef1e7a b7e8045 0ef1e7a b7e8045 0ef1e7a b7e8045 0ef1e7a b7e8045 0ef1e7a 8d9a9fd 0ef1e7a 1b921c8 8d9a9fd 0ef1e7a 8d9a9fd 0ef1e7a 1b921c8 0ef1e7a 8d9a9fd 0ef1e7a 5ef2022 78f7931 c5c2578 0ef1e7a 87a2e42 cd7b64d 177bc81 1b921c8 c5c2578 1b921c8 78f7931 c5c2578 d1c6814 c5c2578 5ef2022 d1c6814 b9c642f c5c2578 d1c6814 e398dfd c5c2578 d1c6814 a4c5b38 c5c2578 d1c6814 87a2e42 cd7b64d 177bc81 78f7931 5ef2022 d1c6814 0ef1e7a 637d1bb 0ef1e7a 0381173 0ef1e7a 9ec4bd2 87a2e42 177bc81 0ef1e7a 78f7931 0ef1e7a 177bc81 0ef1e7a 177bc81 0ef1e7a b7e8045 0ef1e7a 7af5bf2 cd7b64d 8d9a9fd 0ef1e7a 8d9a9fd 0ef1e7a 8d9a9fd 0ef1e7a addde7a 0ef1e7a 8d9a9fd 0ef1e7a 8d9a9fd 0ef1e7a dc000b7 0ef1e7a 8d9a9fd 0ef1e7a 8d9a9fd 0ef1e7a cda8e51 42f405c cda8e51 42f405c cda8e51 42f405c d14cc5a 42f405c e0aa3d5 0ef1e7a 3cf7045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
import time
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from history_manager import UserHistoryManager
from search_history import create_history_tab, create_history_component
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from html_templates import (
format_description_html,
format_single_dog_result,
format_multiple_breeds_result,
format_error_message,
format_warning_html,
format_multi_dog_container,
format_breed_details_html,
get_color_scheme,
get_akc_breeds_link
)
from urllib.parse import quote
from ultralytics import YOLO
import traceback
import spaces
from functools import wraps
# model_yolo = YOLO('yolov8l.pt')
# history_manager = UserHistoryManager()
# dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
# "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
# "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
# "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
# "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
# "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
# "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
# "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
# "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
# "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
# "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
# "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
# "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
# "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
# "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
# "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
# "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
# "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
# "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
# "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
# "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
# "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
# "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
# "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
# "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
# "Wire-Haired_Fox_Terrier"]
# class MultiHeadAttention(nn.Module):
# def __init__(self, in_dim, num_heads=8):
# super().__init__()
# self.num_heads = num_heads
# self.head_dim = max(1, in_dim // num_heads)
# self.scaled_dim = self.head_dim * num_heads
# self.fc_in = nn.Linear(in_dim, self.scaled_dim)
# self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
# self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
# self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
# self.fc_out = nn.Linear(self.scaled_dim, in_dim)
# def forward(self, x):
# N = x.shape[0]
# x = self.fc_in(x)
# q = self.query(x).view(N, self.num_heads, self.head_dim)
# k = self.key(x).view(N, self.num_heads, self.head_dim)
# v = self.value(x).view(N, self.num_heads, self.head_dim)
# energy = torch.einsum("nqd,nkd->nqk", [q, k])
# attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
# out = torch.einsum("nqk,nvd->nqd", [attention, v])
# out = out.reshape(N, self.scaled_dim)
# out = self.fc_out(out)
# return out
# class BaseModel(nn.Module):
# def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
# super().__init__()
# self.device = device
# self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
# self.feature_dim = self.backbone.classifier[1].in_features
# self.backbone.classifier = nn.Identity()
# self.num_heads = max(1, min(8, self.feature_dim // 64))
# self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
# self.classifier = nn.Sequential(
# nn.LayerNorm(self.feature_dim),
# nn.Dropout(0.3),
# nn.Linear(self.feature_dim, num_classes)
# )
# self.to(device)
# def forward(self, x):
# x = x.to(self.device)
# features = self.backbone(x)
# attended_features = self.attention(features)
# logits = self.classifier(attended_features)
# return logits, attended_features
# # Initialize model
# num_classes = len(dog_breeds)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# # Initialize base model
# model = BaseModel(num_classes=num_classes, device=device).to(device)
# # Load model path
# model_path = '124_best_model_dog.pth'
# checkpoint = torch.load(model_path, map_location=device)
# # Load model state
# model.load_state_dict(checkpoint['base_model'], strict=False)
# model.eval()
# # Image preprocessing function
# def preprocess_image(image):
# # If the image is numpy.ndarray turn into PIL.Image
# if isinstance(image, np.ndarray):
# image = Image.fromarray(image)
# # Use torchvision.transforms to process images
# transform = transforms.Compose([
# transforms.Resize((224, 224)),
# transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# ])
# return transform(image).unsqueeze(0)
# async def predict_single_dog(image):
# """
# Predicts the dog breed using only the classifier.
# Args:
# image: PIL Image or numpy array
# Returns:
# tuple: (top1_prob, topk_breeds, relative_probs)
# """
# image_tensor = preprocess_image(image).to(device)
# with torch.no_grad():
# # Get model outputs (只使用logits,不需要features)
# logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
# probs = F.softmax(logits, dim=1)
# # Classifier prediction
# top5_prob, top5_idx = torch.topk(probs, k=5)
# breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
# probabilities = [prob.item() for prob in top5_prob[0]]
# # Calculate relative probabilities
# sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
# relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
# # Debug output
# print("\nClassifier Predictions:")
# for breed, prob in zip(breeds[:5], probabilities[:5]):
# print(f"{breed}: {prob:.4f}")
# return probabilities[0], breeds[:3], relative_probs
# async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
# dogs = []
# boxes = []
# for box in results.boxes:
# if box.cls == 16: # COCO dataset class for dog is 16
# xyxy = box.xyxy[0].tolist()
# confidence = box.conf.item()
# boxes.append((xyxy, confidence))
# if not boxes:
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
# else:
# nms_boxes = non_max_suppression(boxes, iou_threshold)
# for box, confidence in nms_boxes:
# x1, y1, x2, y2 = box
# w, h = x2 - x1, y2 - y1
# x1 = max(0, x1 - w * 0.05)
# y1 = max(0, y1 - h * 0.05)
# x2 = min(image.width, x2 + w * 0.05)
# y2 = min(image.height, y2 + h * 0.05)
# cropped_image = image.crop((x1, y1, x2, y2))
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
# return dogs
# def non_max_suppression(boxes, iou_threshold):
# keep = []
# boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
# while boxes:
# current = boxes.pop(0)
# keep.append(current)
# boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
# return keep
# def calculate_iou(box1, box2):
# x1 = max(box1[0], box2[0])
# y1 = max(box1[1], box2[1])
# x2 = min(box1[2], box2[2])
# y2 = min(box1[3], box2[3])
# intersection = max(0, x2 - x1) * max(0, y2 - y1)
# area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
# area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
# iou = intersection / float(area1 + area2 - intersection)
# return iou
# def create_breed_comparison(breed1: str, breed2: str) -> dict:
# breed1_info = get_dog_description(breed1)
# breed2_info = get_dog_description(breed2)
# # 標準化數值轉換
# value_mapping = {
# 'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
# 'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
# 'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
# 'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
# }
# comparison_data = {
# breed1: {},
# breed2: {}
# }
# for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
# comparison_data[breed] = {
# 'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
# 'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
# 'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
# 'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
# 'Good_with_Children': info['Good with Children'] == 'Yes',
# 'Original_Data': info
# }
# return comparison_data
# async def predict(image):
# """
# Main prediction function that handles both single and multiple dog detection.
# Args:
# image: PIL Image or numpy array
# Returns:
# tuple: (html_output, annotated_image, initial_state)
# """
# if image is None:
# return format_warning_html("Please upload an image to start."), None, None
# try:
# if isinstance(image, np.ndarray):
# image = Image.fromarray(image)
# # Detect dogs in the image
# dogs = await detect_multiple_dogs(image)
# color_scheme = get_color_scheme(len(dogs) == 1)
# # Prepare for annotation
# annotated_image = image.copy()
# draw = ImageDraw.Draw(annotated_image)
# try:
# font = ImageFont.truetype("arial.ttf", 24)
# except:
# font = ImageFont.load_default()
# dogs_info = ""
# # Process each detected dog
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
# color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
# # Draw box and label on image
# draw.rectangle(box, outline=color, width=4)
# label = f"Dog {i+1}"
# label_bbox = draw.textbbox((0, 0), label, font=font)
# label_width = label_bbox[2] - label_bbox[0]
# label_height = label_bbox[3] - label_bbox[1]
# # Draw label background and text
# label_x = box[0] + 5
# label_y = box[1] + 5
# draw.rectangle(
# [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
# fill='white',
# outline=color,
# width=2
# )
# draw.text((label_x, label_y), label, fill=color, font=font)
# # Predict breed
# top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
# combined_confidence = detection_confidence * top1_prob
# # Format results based on confidence with error handling
# try:
# if combined_confidence < 0.2:
# dogs_info += format_error_message(color, i+1)
# elif top1_prob >= 0.45:
# breed = topk_breeds[0]
# description = get_dog_description(breed)
# # Handle missing breed description
# if description is None:
# # 如果沒有描述,創建一個基本描述
# description = {
# "Name": breed,
# "Size": "Unknown",
# "Exercise Needs": "Unknown",
# "Grooming Needs": "Unknown",
# "Care Level": "Unknown",
# "Good with Children": "Unknown",
# "Description": f"Identified as {breed.replace('_', ' ')}"
# }
# dogs_info += format_single_dog_result(breed, description, color)
# else:
# # 修改format_multiple_breeds_result的調用,包含錯誤處理
# dogs_info += format_multiple_breeds_result(
# topk_breeds,
# relative_probs,
# color,
# i+1,
# lambda breed: get_dog_description(breed) or {
# "Name": breed,
# "Size": "Unknown",
# "Exercise Needs": "Unknown",
# "Grooming Needs": "Unknown",
# "Care Level": "Unknown",
# "Good with Children": "Unknown",
# "Description": f"Identified as {breed.replace('_', ' ')}"
# }
# )
# except Exception as e:
# print(f"Error formatting results for dog {i+1}: {str(e)}")
# dogs_info += format_error_message(color, i+1)
# # Wrap final HTML output
# html_output = format_multi_dog_container(dogs_info)
# # Prepare initial state
# initial_state = {
# "dogs_info": dogs_info,
# "image": annotated_image,
# "is_multi_dog": len(dogs) > 1,
# "html_output": html_output
# }
# return html_output, annotated_image, initial_state
# except Exception as e:
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
# print(error_msg)
# return format_warning_html(error_msg), None, None
# def show_details_html(choice, previous_output, initial_state):
# """
# Generate detailed HTML view for a selected breed.
# Args:
# choice: str, Selected breed option
# previous_output: str, Previous HTML output
# initial_state: dict, Current state information
# Returns:
# tuple: (html_output, gradio_update, updated_state)
# """
# if not choice:
# return previous_output, gr.update(visible=True), initial_state
# try:
# breed = choice.split("More about ")[-1]
# description = get_dog_description(breed)
# html_output = format_breed_details_html(description, breed)
# # Update state
# initial_state["current_description"] = html_output
# initial_state["original_buttons"] = initial_state.get("buttons", [])
# return html_output, gr.update(visible=True), initial_state
# except Exception as e:
# error_msg = f"An error occurred while showing details: {e}"
# print(error_msg)
# return format_warning_html(error_msg), gr.update(visible=True), initial_state
# def main():
# with gr.Blocks(css=get_css_styles()) as iface:
# # Header HTML
# gr.HTML("""
# <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
# <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
# 🐾 PawMatch AI
# </h1>
# <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
# Your Smart Dog Breed Guide
# </h2>
# <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
# <p style='color: #718096; font-size: 0.9em;'>
# Powered by AI • Breed Recognition • Smart Matching • Companion Guide
# </p>
# </header>
# """)
# # 先創建歷史組件實例(但不創建標籤頁)
# history_component = create_history_component()
# with gr.Tabs():
# # 1. 品種檢測標籤頁
# example_images = [
# 'Border_Collie.jpg',
# 'Golden_Retriever.jpeg',
# 'Saint_Bernard.jpeg',
# 'Samoyed.jpg',
# 'French_Bulldog.jpeg'
# ]
# detection_components = create_detection_tab(predict, example_images)
# # 2. 品種比較標籤頁
# comparison_components = create_comparison_tab(
# dog_breeds=dog_breeds,
# get_dog_description=get_dog_description,
# breed_health_info=breed_health_info,
# breed_noise_info=breed_noise_info
# )
# # 3. 品種推薦標籤頁
# recommendation_components = create_recommendation_tab(
# UserPreferences=UserPreferences,
# get_breed_recommendations=get_breed_recommendations,
# format_recommendation_html=format_recommendation_html,
# history_component=history_component
# )
# # 4. 最後創建歷史記錄標籤頁
# create_history_tab(history_component)
# # Footer
# gr.HTML('''
# <div style="
# display: flex;
# align-items: center;
# justify-content: center;
# gap: 20px;
# padding: 20px 0;
# ">
# <p style="
# font-family: 'Arial', sans-serif;
# font-size: 14px;
# font-weight: 500;
# letter-spacing: 2px;
# background: linear-gradient(90deg, #555, #007ACC);
# -webkit-background-clip: text;
# -webkit-text-fill-color: transparent;
# margin: 0;
# text-transform: uppercase;
# display: inline-block;
# ">EXPLORE THE CODE →</p>
# <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
# <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
# </a>
# </div>
# ''')
# return iface
# if __name__ == "__main__":
# iface = main()
# iface.launch()
history_manager = UserHistoryManager()
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
class ModelManager:
"""
模型管理器:負責AI模型的初始化和管理
使用單例模式確保只有一個實例在管理所有模型
"""
_instance = None
_initialized = False
_yolo_model = None
_breed_model = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
# 避免重複初始化
if not ModelManager._initialized:
ModelManager._initialized = True
@property
def yolo_model(self):
"""
延遲初始化YOLO模型
只有在第一次使用時才會創建實例
"""
if self._yolo_model is None:
self._yolo_model = YOLO('yolov8l.pt')
return self._yolo_model
@property
def breed_model(self):
"""
延遲初始化品種分類模型
只有在第一次使用時才會創建實例
"""
if self._breed_model is None:
self._breed_model = BaseModel(num_classes=len(dog_breeds),
device=device).to(device)
checkpoint = torch.load('124_best_model_dog.pth',
map_location=device)
self._breed_model.load_state_dict(checkpoint['base_model'],
strict=False)
self._breed_model.eval()
return self._breed_model
model_manager = ModelManager()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
@spaces.GPU
def predict_single_dog(image):
"""
Predicts the dog breed using only the classifier.
Args:
image: PIL Image or numpy array
Returns:
tuple: (top1_prob, topk_breeds, relative_probs)
"""
image_tensor = preprocess_image(image).to(device)
with torch.no_grad():
# Get model outputs (只使用logits,不需要features)
logits = model_manager.breed_model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
probs = F.softmax(logits, dim=1)
# Classifier prediction
top5_prob, top5_idx = torch.topk(probs, k=5)
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
probabilities = [prob.item() for prob in top5_prob[0]]
# Calculate relative probabilities
sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
# Debug output
print("\nClassifier Predictions:")
for breed, prob in zip(breeds[:5], probabilities[:5]):
print(f"{breed}: {prob:.4f}")
return probabilities[0], breeds[:3], relative_probs
@spaces.GPU
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
results = model_manager.yolo_model(image, conf=conf_threshold,
iou=iou_threshold)[0]
dogs = []
boxes = []
for box in results.boxes:
if box.cls == 16: # COCO dataset class for dog is 16
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
boxes.append((xyxy, confidence))
if not boxes:
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
else:
nms_boxes = non_max_suppression(boxes, iou_threshold)
for box, confidence in nms_boxes:
x1, y1, x2, y2 = box
w, h = x2 - x1, y2 - y1
x1 = max(0, x1 - w * 0.05)
y1 = max(0, y1 - h * 0.05)
x2 = min(image.width, x2 + w * 0.05)
y2 = min(image.height, y2 + h * 0.05)
cropped_image = image.crop((x1, y1, x2, y2))
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
return dogs
def non_max_suppression(boxes, iou_threshold):
keep = []
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
while boxes:
current = boxes.pop(0)
keep.append(current)
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
return keep
def calculate_iou(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection / float(area1 + area2 - intersection)
return iou
def create_breed_comparison(breed1: str, breed2: str) -> dict:
breed1_info = get_dog_description(breed1)
breed2_info = get_dog_description(breed2)
# 標準化數值轉換
value_mapping = {
'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
}
comparison_data = {
breed1: {},
breed2: {}
}
for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
comparison_data[breed] = {
'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
'Good_with_Children': info['Good with Children'] == 'Yes',
'Original_Data': info
}
return comparison_data
def predict(image):
"""
Main prediction function that handles both single and multiple dog detection.
Args:
image: PIL Image or numpy array
Returns:
tuple: (html_output, annotated_image, initial_state)
"""
if image is None:
return format_warning_html("Please upload an image to start."), None, None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Detect dogs in the image
dogs = detect_multiple_dogs(image)
color_scheme = get_color_scheme(len(dogs) == 1)
# Prepare for annotation
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
dogs_info = ""
# Process each detected dog
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
# Draw box and label on image
draw.rectangle(box, outline=color, width=4)
label = f"Dog {i+1}"
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
# Draw label background and text
label_x = box[0] + 5
label_y = box[1] + 5
draw.rectangle(
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
fill='white',
outline=color,
width=2
)
draw.text((label_x, label_y), label, fill=color, font=font)
# Predict breed
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
combined_confidence = detection_confidence * top1_prob
# Format results based on confidence with error handling
try:
if combined_confidence < 0.2:
dogs_info += format_error_message(color, i+1)
elif top1_prob >= 0.45:
breed = topk_breeds[0]
description = get_dog_description(breed)
# Handle missing breed description
if description is None:
# 如果沒有描述,創建一個基本描述
description = {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
dogs_info += format_single_dog_result(breed, description, color)
else:
# 修改format_multiple_breeds_result的調用,包含錯誤處理
dogs_info += format_multiple_breeds_result(
topk_breeds,
relative_probs,
color,
i+1,
lambda breed: get_dog_description(breed) or {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
)
except Exception as e:
print(f"Error formatting results for dog {i+1}: {str(e)}")
dogs_info += format_error_message(color, i+1)
# Wrap final HTML output
html_output = format_multi_dog_container(dogs_info)
# Prepare initial state
initial_state = {
"dogs_info": dogs_info,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"html_output": html_output
}
return html_output, annotated_image, initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return format_warning_html(error_msg), None, None
def show_details_html(choice, previous_output, initial_state):
"""
Generate detailed HTML view for a selected breed.
Args:
choice: str, Selected breed option
previous_output: str, Previous HTML output
initial_state: dict, Current state information
Returns:
tuple: (html_output, gradio_update, updated_state)
"""
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
html_output = format_breed_details_html(description, breed)
# Update state
initial_state["current_description"] = html_output
initial_state["original_buttons"] = initial_state.get("buttons", [])
return html_output, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return format_warning_html(error_msg), gr.update(visible=True), initial_state
def main():
with gr.Blocks(css=get_css_styles()) as iface:
spaces.init()
gr.HTML("""
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
🐾 PawMatch AI
</h1>
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
Your Smart Dog Breed Guide
</h2>
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
<p style='color: #718096; font-size: 0.9em;'>
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
</p>
</header>
""")
# 先創建歷史組件實例(但不創建標籤頁)
history_component = create_history_component()
with gr.Tabs():
# 1. 品種檢測標籤頁
example_images = [
'Border_Collie.jpg',
'Golden_Retriever.jpeg',
'Saint_Bernard.jpeg',
'Samoyed.jpg',
'French_Bulldog.jpeg'
]
detection_components = create_detection_tab(predict, example_images)
# 2. 品種比較標籤頁
comparison_components = create_comparison_tab(
dog_breeds=dog_breeds,
get_dog_description=get_dog_description,
breed_health_info=breed_health_info,
breed_noise_info=breed_noise_info
)
# 3. 品種推薦標籤頁
recommendation_components = create_recommendation_tab(
UserPreferences=UserPreferences,
get_breed_recommendations=get_breed_recommendations,
format_recommendation_html=format_recommendation_html,
history_component=history_component
)
# 4. 最後創建歷史記錄標籤頁
create_history_tab(history_component)
# Footer
gr.HTML('''
<div style="
display: flex;
align-items: center;
justify-content: center;
gap: 20px;
padding: 20px 0;
">
<p style="
font-family: 'Arial', sans-serif;
font-size: 14px;
font-weight: 500;
letter-spacing: 2px;
background: linear-gradient(90deg, #555, #007ACC);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin: 0;
text-transform: uppercase;
display: inline-block;
">EXPLORE THE CODE →</p>
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
</a>
</div>
''')
return iface
if __name__ == "__main__":
iface = main()
iface.launch() |