Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,053 Bytes
8b87358 745b3ae 8b87358 1044c24 678ff71 81d7def c9e5868 7bde2e9 b663fd0 4f8052f c9e5868 3c27777 af9f5fd c9e5868 8b87358 21b74d9 8b87358 979a7b6 8b87358 bbd78ec 8b87358 bbd78ec 8b87358 bbd78ec 8b87358 81d7def 82c1429 866dbcd 0322896 ccb675d f3a7e83 5065990 4edafdf f3a7e83 ff1e401 f3a7e83 8f303b0 4f8052f cb2b5ac 1fabe7c cb2b5ac 0df9d3f cb2b5ac 0df9d3f 1fabe7c 9543b48 0f0e934 9543b48 af9f5fd 9543b48 af9f5fd 9543b48 648be12 a23eda2 18941a4 0f0e934 7393f93 0f0e934 7393f93 2c0def4 8c21c35 2c0def4 8c21c35 2c0def4 8c21c35 2c0def4 8c21c35 1eb7f90 e296e0a 9543b48 63b2431 9543b48 63b2431 9543b48 1ad0bc3 63b2431 1ad0bc3 63b2431 1ad0bc3 2156e3a 63b2431 1ad0bc3 2156e3a 1ad0bc3 63b2431 1ad0bc3 63b2431 1ad0bc3 9543b48 1ad0bc3 9543b48 63b2431 1ad0bc3 1fabe7c 1ad0bc3 7ca006d 648be12 1ce85e8 b663fd0 5773c54 1ce85e8 50c8543 1ce85e8 b663fd0 1ce85e8 cb2b5ac 1ce85e8 b663fd0 8c21c35 50c8543 5773c54 50c8543 8c21c35 d8c1250 a312d58 73cee42 4f1e4cb 083c145 4f1e4cb 5c648b4 5773c54 196f0d8 215a635 1ce85e8 215a635 5773c54 1ce85e8 9d69a6b 5773c54 1ce85e8 196f0d8 8c21c35 196f0d8 5773c54 196f0d8 cb2b5ac 73cee42 9d69a6b 3fa059c 4486636 8c21c35 cb2b5ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from data_manager import get_dog_description
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback
import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# 下載YOLOv8預訓練模型
model_yolo = YOLO('yolov8s.pt') # 使用 YOLOv8 預訓練模型
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
# evaluation mode
model.eval()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def get_akc_breeds_link():
return "https://www.akc.org/dog-breeds/"
def format_description(description, breed):
if isinstance(description, dict):
# 確保每一個描述項目換行顯示
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
else:
formatted_description = description
akc_link = get_akc_breeds_link()
formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
"You may need to search for the specific breed on that page. "
"I am not responsible for the content on external sites. "
"Please refer to the AKC's terms of use and privacy policy.*")
formatted_description += disclaimer
return formatted_description
async def predict_single_dog(image):
image_tensor = preprocess_image(image)
with torch.no_grad():
output = model(image_tensor)
logits = output[0] if isinstance(output, tuple) else output
probabilities = F.softmax(logits, dim=1)
topk_probs, topk_indices = torch.topk(probabilities, k=3)
top1_prob = topk_probs[0][0].item()
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
return top1_prob, topk_breeds, topk_probs_percent
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.6):
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
# dogs = []
# boxes = []
# for box in results.boxes:
# if box.cls == 16: # COCO dataset class for dog is 16
# xyxy = box.xyxy[0].tolist()
# confidence = box.conf.item()
# boxes.append((xyxy, confidence))
# if not boxes:
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
# else:
# nms_boxes = non_max_suppression(boxes, iou_threshold)
# for box, confidence in nms_boxes:
# x1, y1, x2, y2 = box
# w, h = x2 - x1, y2 - y1
# x1 = max(0, x1 - w * 0.05)
# y1 = max(0, y1 - h * 0.05)
# x2 = min(image.width, x2 + w * 0.05)
# y2 = min(image.height, y2 + h * 0.05)
# cropped_image = image.crop((x1, y1, x2, y2))
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
# return dogs
async def detect_multiple_dogs(image, conf_threshold=0.4, iou_threshold=0.5):
# 提高conf_threshold來減少無效框
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
dogs = []
boxes = []
for box in results.boxes:
if box.cls == 16: # 確保是狗的類別
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
# 只保存高信心的框,降低不必要框的數量
if confidence >= conf_threshold:
boxes.append((xyxy, confidence))
if not boxes:
# 沒有檢測到狗,使用整張圖
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
else:
nms_boxes = non_max_suppression(boxes, iou_threshold)
for box, confidence in nms_boxes:
x1, y1, x2, y2 = box
cropped_image = image.crop((x1, y1, x2, y2))
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
return dogs
def non_max_suppression(boxes, iou_threshold):
keep = []
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
while boxes:
current = boxes.pop(0)
keep.append(current)
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
return keep
def calculate_iou(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection / float(area1 + area2 - intersection)
return iou
async def process_single_dog(image):
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
if top1_prob < 0.2:
initial_state = {
"explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
"buttons": [],
"show_back": False,
"image": None,
"is_multi_dog": False
}
return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
breed = topk_breeds[0]
description = get_dog_description(breed)
if top1_prob >= 0.5:
formatted_description = format_description(description, breed)
initial_state = {
"explanation": formatted_description,
"buttons": [],
"show_back": False,
"image": image,
"is_multi_dog": False
}
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
else:
explanation = (
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
"Click on a button to view more information about the breed."
)
buttons = [
gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
gr.update(visible=True, value=f"More about {topk_breeds[2]}")
]
initial_state = {
"explanation": explanation,
"buttons": buttons,
"show_back": True,
"image": image,
"is_multi_dog": False
}
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
# async def predict(image):
# if image is None:
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
# try:
# if isinstance(image, np.ndarray):
# image = Image.fromarray(image)
# dogs = await detect_multiple_dogs(image)
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
# explanations = []
# buttons = []
# annotated_image = image.copy()
# draw = ImageDraw.Draw(annotated_image)
# font = ImageFont.load_default()
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
# color = color_list[i % len(color_list)]
# draw.rectangle(box, outline=color, width=3)
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
# combined_confidence = detection_confidence * top1_prob
# if top1_prob >= 0.5:
# breed = topk_breeds[0]
# description = get_dog_description(breed)
# formatted_description = format_description(description, breed)
# explanations.append(f"Dog {i+1}: {formatted_description}")
# elif combined_confidence >= 0.2:
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
# explanations.append(dog_explanation)
# buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
# else:
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
# final_explanation = "\n\n".join(explanations)
# if buttons:
# final_explanation += "\n\nClick on a button to view more information about the breed."
# initial_state = {
# "explanation": final_explanation,
# "buttons": buttons,
# "show_back": True,
# "image": annotated_image,
# "is_multi_dog": len(dogs) > 1,
# "dogs_info": explanations
# }
# return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
# else:
# initial_state = {
# "explanation": final_explanation,
# "buttons": [],
# "show_back": False,
# "image": annotated_image,
# "is_multi_dog": len(dogs) > 1,
# "dogs_info": explanations
# }
# return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
# except Exception as e:
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
# print(error_msg)
# return error_msg, None, gr.update(visible=False, choices=[]), None
async def predict(image):
if image is None:
return "Please upload an image to start.", None, gr.update(visible=False), None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# 根據圖像尺寸判斷是否應該使用YOLO框選
if image.width > 500: # 假設寬度超過500像素才考慮多狗情況
dogs = await detect_multiple_dogs(image)
else:
dogs = [(image, 1.0, [0, 0, image.width, image.height])]
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
explanations = []
buttons = []
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
font = ImageFont.load_default()
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
color = color_list[i % len(color_list)]
draw.rectangle(box, outline=color, width=3)
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
combined_confidence = detection_confidence * top1_prob
if top1_prob >= 0.5:
breed = topk_breeds[0]
description = get_dog_description(breed)
formatted_description = format_description(description, breed)
explanations.append(f"Dog {i+1}: {formatted_description}")
elif combined_confidence >= 0.2:
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
explanations.append(dog_explanation)
buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
else:
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
final_explanation = "\n\n".join(explanations)
if buttons:
final_explanation += "\n\nClick on a button to view more information about the breed."
return final_explanation, annotated_image, gr.update(visible=True, choices=buttons)
else:
return final_explanation, annotated_image, gr.update(visible=False, choices=[])
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return error_msg, None, gr.update(visible=False, choices=[]), None
def show_details(choice, previous_output, initial_state):
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
formatted_description = format_description(description, breed)
initial_state["current_description"] = formatted_description
initial_state["original_buttons"] = initial_state.get("buttons", [])
return formatted_description, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return error_msg, gr.update(visible=True), initial_state
def go_back(state):
buttons = state.get("buttons", [])
return (
state["explanation"],
state["image"],
gr.update(visible=True, choices=buttons),
gr.update(visible=False),
state
)
with gr.Blocks() as iface:
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
with gr.Row():
input_image = gr.Image(label="Upload a dog image", type="pil")
output_image = gr.Image(label="Annotated Image")
output = gr.Markdown(label="Prediction Results")
breed_buttons = gr.Radio(choices=[], label="More Information", visible=False)
back_button = gr.Button("Back", visible=False)
initial_state = gr.State()
input_image.change(
predict,
inputs=input_image,
outputs=[output, output_image, breed_buttons, initial_state]
)
breed_buttons.change(
show_details,
inputs=[breed_buttons, output, initial_state],
outputs=[output, back_button, initial_state]
)
back_button.click(
go_back,
inputs=[initial_state],
outputs=[output, output_image, breed_buttons, back_button, initial_state]
)
gr.Examples(
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
inputs=input_image
)
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
if __name__ == "__main__":
iface.launch() |