Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,559 Bytes
71c450e d2d4164 71c450e d2d4164 71c450e d2d4164 71c450e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import re
import gradio as gr
from PIL import Image
# def create_detection_tab(predict_fn, example_images):
# with gr.TabItem("Breed Detection"):
# gr.HTML("""
# <div style='
# text-align: center;
# padding: 20px 0;
# margin: 15px 0;
# background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
# border-radius: 10px;
# '>
# <p style='
# font-size: 1.2em;
# margin: 0;
# padding: 0 20px;
# line-height: 1.5;
# background: linear-gradient(90deg, #4299e1, #48bb78);
# -webkit-background-clip: text;
# -webkit-text-fill-color: transparent;
# font-weight: 600;
# '>
# Upload a picture of a dog, and the model will predict its breed and provide detailed information!
# </p>
# <p style='
# font-size: 0.9em;
# color: #666;
# margin-top: 8px;
# padding: 0 20px;
# '>
# Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
# </p>
# </div>
# """)
# with gr.Row():
# input_image = gr.Image(label="Upload a dog image", type="pil")
# output_image = gr.Image(label="Annotated Image")
# output = gr.HTML(label="Prediction Results")
# initial_state = gr.State()
# input_image.change(
# predict_fn,
# inputs=input_image,
# outputs=[output, output_image, initial_state]
# )
# gr.Examples(
# examples=example_images,
# inputs=input_image
# )
# return {
# 'input_image': input_image,
# 'output_image': output_image,
# 'output': output,
# 'initial_state': initial_state
# }
def create_detection_tab(predict_fn, example_images):
# 首先定義CSS樣式
custom_css = """
/* 標籤樣式 */
.tab-nav {
padding: 0 !important;
margin-bottom: 20px !important;
border-bottom: 1px solid #e2e8f0 !important;
}
/* 所有標籤的基本樣式 */
.tab-nav button {
padding: 12px 16px !important;
margin: 0 8px !important;
font-size: 1.1em !important;
font-weight: 500 !important;
transition: all 0.3s ease !important;
border-bottom: 2px solid transparent !important;
background: none !important;
position: relative !important;
}
/* 被選中的標籤樣式 */
.tab-nav button.selected {
color: #4299e1 !important;
border-bottom: 2px solid #4299e1 !important;
background: linear-gradient(to bottom, rgba(66, 153, 225, 0.1), transparent) !important;
}
/* hover 效果 */
.tab-nav button:hover {
color: #4299e1 !important;
background: rgba(66, 153, 225, 0.05) !important;
}
"""
with gr.Blocks(css=custom_css) as detection_tab:
with gr.TabItem("Breed Detection"):
gr.HTML("""
<div style='
text-align: center;
padding: 20px 0;
margin: 15px 0;
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
border-radius: 10px;
'>
<p style='
font-size: 1.2em;
margin: 0;
padding: 0 20px;
line-height: 1.5;
background: linear-gradient(90deg, #4299e1, #48bb78);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-weight: 600;
'>
Upload a picture of a dog, and the model will predict its breed and provide detailed information!
</p>
<p style='
font-size: 0.9em;
color: #666;
margin-top: 8px;
padding: 0 20px;
'>
Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
</p>
</div>
""")
with gr.Row():
input_image = gr.Image(label="Upload a dog image", type="pil")
output_image = gr.Image(label="Annotated Image")
output = gr.HTML(label="Prediction Results")
initial_state = gr.State()
input_image.change(
predict_fn,
inputs=input_image,
outputs=[output, output_image, initial_state]
)
gr.Examples(
examples=example_images,
inputs=input_image
)
return {
'input_image': input_image,
'output_image': output_image,
'output': output,
'initial_state': initial_state
}
|