File size: 11,612 Bytes
d57d119
c8c8087
0d578af
59f3ffe
 
b3a8c00
c8c8087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db0349
75a6095
c8c8087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b99e688
c8c8087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a6095
7993dfc
75a6095
5db0349
 
c8c8087
5db0349
 
 
 
 
 
c8c8087
75a6095
5db0349
c8c8087
b99e688
 
5db0349
 
 
 
 
 
 
c8c8087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6557f15
c8c8087
 
 
 
 
 
 
 
 
 
 
 
 
d77b4db
c8c8087
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import sqlite3
import gradio as gr
from dog_database import get_dog_description, dog_data
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from smart_breed_matcher import SmartBreedMatcher
from description_search_ui import create_description_search_tab

def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):

    with gr.TabItem("Breed Recommendation"):
        with gr.Tabs():
            with gr.Tab("Find by Criteria"):
                gr.HTML("<p style='text-align: center;'>Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!</p>")

                with gr.Row():
                    with gr.Column():
                        living_space = gr.Radio(
                            choices=["apartment", "house_small", "house_large"],
                            label="What type of living space do you have?",
                            info="Choose your current living situation",
                            value="apartment"
                        )

                        exercise_time = gr.Slider(
                            minimum=0,
                            maximum=180,
                            value=60,
                            label="Daily exercise time (minutes)",
                            info="Consider walks, play time, and training"
                        )

                        grooming_commitment = gr.Radio(
                            choices=["low", "medium", "high"],
                            label="Grooming commitment level",
                            info="Low: monthly, Medium: weekly, High: daily",
                            value="medium"
                        )

                    with gr.Column():
                        experience_level = gr.Radio(
                            choices=["beginner", "intermediate", "advanced"],
                            label="Dog ownership experience",
                            info="Be honest - this helps find the right match",
                            value="beginner"
                        )

                        has_children = gr.Checkbox(
                            label="Have children at home",
                            info="Helps recommend child-friendly breeds"
                        )

                        noise_tolerance = gr.Radio(
                            choices=["low", "medium", "high"],
                            label="Noise tolerance level",
                            info="Some breeds are more vocal than others",
                            value="medium"
                        )

                get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
                recommendation_output = gr.HTML(label="Breed Recommendations")

            with gr.Tab("Find by Description"):
                description_input, description_search_btn, description_output, processing_message = create_description_search_tab()

    
        def on_find_match_click(*args):
            try:
                user_prefs = UserPreferences(
                    living_space=args[0],
                    exercise_time=args[1],
                    grooming_commitment=args[2],
                    experience_level=args[3],
                    has_children=args[4],
                    noise_tolerance=args[5],
                    space_for_play=True if args[0] != "apartment" else False,
                    other_pets=False,
                    climate="moderate",
                    health_sensitivity="medium",  # 新增: 默認中等敏感度
                    barking_acceptance=args[5]    # 使用 noise_tolerance 作為 barking_acceptance
                )

                recommendations = get_breed_recommendations(user_prefs, top_n=10)

                history_results = [{
                    'breed': rec['breed'],
                    'rank': rec['rank'],
                    'overall_score': rec['final_score'],
                    'base_score': rec['base_score'],
                    'bonus_score': rec['bonus_score'],
                    'scores': rec['scores']
                } for rec in recommendations]

                # 保存到歷史記錄,也需要更新保存的偏好設定
                history_component.save_search(
                    user_preferences={
                        'living_space': args[0],
                        'exercise_time': args[1],
                        'grooming_commitment': args[2],
                        'experience_level': args[3],
                        'has_children': args[4],
                        'noise_tolerance': args[5],
                        'health_sensitivity': "medium",
                        'barking_acceptance': args[5]
                    },
                    results=history_results
                )

                return format_recommendation_html(recommendations)

            except Exception as e:
                print(f"Error in find match: {str(e)}")
                import traceback
                print(traceback.format_exc())
                return "Error getting recommendations"

        def on_description_search(description: str):
            try:
                matcher = SmartBreedMatcher(dog_data)
                breed_recommendations = matcher.match_user_preference(description, top_n=10)
                
                print("Creating user preferences...")
                user_prefs = UserPreferences(
                    living_space="apartment" if "apartment" in description.lower() else "house_small",
                    exercise_time=60,
                    grooming_commitment="medium",
                    experience_level="intermediate",
                    has_children="children" in description.lower() or "kids" in description.lower(),
                    noise_tolerance="medium",
                    space_for_play=True if "yard" in description.lower() or "garden" in description.lower() else False,
                    other_pets=False,
                    climate="moderate",
                    health_sensitivity="medium",
                    barking_acceptance=None
                )

                final_recommendations = []
                
                for smart_rec in breed_recommendations:
                    breed_name = smart_rec['breed']
                    breed_info = get_dog_description(breed_name)
                    if not isinstance(breed_info, dict):
                        continue
                        
                    # 計算基礎相容性分數
                    compatibility_scores = calculate_compatibility_score(breed_info, user_prefs)
                    
                    # 最終分數計算
                    is_preferred = smart_rec.get('is_preferred', False)
                    base_score = compatibility_scores.get('overall', 0.7)
                    smart_score = smart_rec['score']
                    
                    # 根據是否為偏好品種調整分數
                    if is_preferred:
                        final_score = 0.95  # 確保最高分
                    else:
                        # 相似品種的分數計算
                        final_score = min(0.90, (base_score * 0.6 + smart_score * 0.4))
                    
                    final_recommendations.append({
                        'rank': 0,  # 稍後更新
                        'breed': breed_name,
                        'base_score': round(base_score, 4),
                        'smart_match_score': round(smart_score, 4),
                        'final_score': round(final_score, 4),
                        'scores': compatibility_scores,
                        'match_reason': smart_rec['reason'],
                        'info': breed_info,
                        'noise_info': breed_noise_info.get(breed_name, {}),
                        'health_info': breed_health_info.get(breed_name, {})
                    })
                
                # 根據final_score重新排序
                final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
                
                # 更新排名
                for i, rec in enumerate(final_recommendations, 1):
                    rec['rank'] = i
                
                # 驗證排序
                print("\nFinal Rankings:")
                for rec in final_recommendations:
                    print(f"#{rec['rank']} {rec['breed']}")
                    print(f"Base Score: {rec['base_score']:.4f}")
                    print(f"Smart Match Score: {rec['smart_match_score']:.4f}")
                    print(f"Final Score: {rec['final_score']:.4f}")
                    print(f"Reason: {rec['match_reason']}\n")
                    
                    # 確保分數按降序排列
                    if rec['rank'] > 1:
                        prev_score = final_recommendations[rec['rank']-2]['final_score']
                        if rec['final_score'] > prev_score:
                            print(f"Warning: Ranking inconsistency detected!")
                            print(f"#{rec['rank']-1} score: {prev_score:.4f}")
                            print(f"#{rec['rank']} score: {rec['final_score']:.4f}")

                processing_message.update(visible=False)
                description_output.update(visible=True)

                result = format_recommendation_html(final_recommendations)
                
                return [
                    result,  # 結果
                    False,   # 隱藏處理消息
                    True,    # 顯示結果區域
                    True     # 重新啟用輸入框
                ]
                
                
            except Exception as e:
                import traceback
                error_details = traceback.format_exc()
                print(f"Detailed error:\n{error_details}")
                error_message = f"Error processing your description. Details: {str(e)}"
                return [
                    error_message,  # 錯誤消息
                    False,          # 隱藏處理消息
                    True,           # 顯示結果區域
                    True           # 重新啟用輸入框
                ]


        get_recommendations_btn.click(
            fn=on_find_match_click,
            inputs=[
                living_space,
                exercise_time,
                grooming_commitment,
                experience_level,
                has_children,
                noise_tolerance
            ],
            outputs=recommendation_output
        )

        description_search_btn.click(
            fn=on_description_search,
            inputs=[description_input],
            outputs=[description_output, processing_message]
        )

    return {
        'living_space': living_space,
        'exercise_time': exercise_time,
        'grooming_commitment': grooming_commitment,
        'experience_level': experience_level,
        'has_children': has_children,
        'noise_tolerance': noise_tolerance,
        'get_recommendations_btn': get_recommendations_btn,
        'recommendation_output': recommendation_output,
        'description_input': description_input,
        'description_search_btn': description_search_btn,
        'description_output': description_output
    }