Spaces:
Running
on
Zero
Running
on
Zero
File size: 63,398 Bytes
6be27f7 2993c13 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 61756ef 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 61756ef 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 6be27f7 1c3b621 ff9b8c0 6d8a6e9 1c3b621 6be27f7 3661fa5 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6d8a6e9 1c3b621 6be27f7 1c3b621 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from data_manager import get_dog_description, UserPreferences, get_breed_recommendations, format_recommendation_html
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback
model_yolo = YOLO('yolov8l.pt')
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
# evaluation mode
model.eval()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def get_akc_breeds_link(breed):
base_url = "https://www.akc.org/dog-breeds/"
breed_url = breed.lower().replace('_', '-')
return f"{base_url}{breed_url}/"
async def predict_single_dog(image):
image_tensor = preprocess_image(image)
with torch.no_grad():
output = model(image_tensor)
logits = output[0] if isinstance(output, tuple) else output
probabilities = F.softmax(logits, dim=1)
topk_probs, topk_indices = torch.topk(probabilities, k=3)
top1_prob = topk_probs[0][0].item()
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
# Calculate relative probabilities for display
raw_probs = [prob.item() for prob in topk_probs[0]]
sum_probs = sum(raw_probs)
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in raw_probs]
return top1_prob, topk_breeds, relative_probs
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
dogs = []
boxes = []
for box in results.boxes:
if box.cls == 16: # COCO dataset class for dog is 16
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
boxes.append((xyxy, confidence))
if not boxes:
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
else:
nms_boxes = non_max_suppression(boxes, iou_threshold)
for box, confidence in nms_boxes:
x1, y1, x2, y2 = box
w, h = x2 - x1, y2 - y1
x1 = max(0, x1 - w * 0.05)
y1 = max(0, y1 - h * 0.05)
x2 = min(image.width, x2 + w * 0.05)
y2 = min(image.height, y2 + h * 0.05)
cropped_image = image.crop((x1, y1, x2, y2))
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
return dogs
def non_max_suppression(boxes, iou_threshold):
keep = []
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
while boxes:
current = boxes.pop(0)
keep.append(current)
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
return keep
def calculate_iou(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection / float(area1 + area2 - intersection)
return iou
async def process_single_dog(image):
top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)
# Case 1: Low confidence - unclear image or breed not in dataset
if top1_prob < 0.2:
error_message = '''
<div class="dog-info-card">
<div class="breed-info">
<p class="warning-message">
<span class="icon">⚠️</span>
The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.
</p>
</div>
</div>
'''
initial_state = {
"explanation": error_message,
"image": None,
"is_multi_dog": False
}
return error_message, None, initial_state
breed = topk_breeds[0]
# Case 2: High confidence - single breed result
if top1_prob >= 0.45:
description = get_dog_description(breed)
formatted_description = format_description_html(description, breed) # 使用 format_description_html
html_content = f'''
<div class="dog-info-card">
<div class="breed-info">
{formatted_description}
</div>
</div>
'''
initial_state = {
"explanation": html_content,
"image": image,
"is_multi_dog": False
}
return html_content, image, initial_state
# Case 3: Medium confidence - show top 3 breeds with relative probabilities
else:
breeds_html = ""
for i, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
description = get_dog_description(breed)
formatted_description = format_description_html(description, breed) # 使用 format_description_html
breeds_html += f'''
<div class="dog-info-card">
<div class="breed-info">
<div class="breed-header">
<span class="breed-name">Breed {i+1}: {breed}</span>
<span class="confidence-badge">Confidence: {prob}</span>
</div>
{formatted_description}
</div>
</div>
'''
initial_state = {
"explanation": breeds_html,
"image": image,
"is_multi_dog": False
}
return breeds_html, image, initial_state
def create_breed_comparison(breed1: str, breed2: str) -> dict:
"""比較兩個狗品種的特性"""
breed1_info = get_dog_description(breed1)
breed2_info = get_dog_description(breed2)
# 標準化數值轉換
value_mapping = {
'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
}
comparison_data = {
breed1: {},
breed2: {}
}
for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
comparison_data[breed] = {
'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
'Good_with_Children': info['Good with Children'] == 'Yes',
'Original_Data': info
}
return comparison_data
async def predict(image):
if image is None:
return "Please upload an image to start.", None, None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
dogs = await detect_multiple_dogs(image)
# 更新顏色組合
single_dog_color = '#34C759' # 清爽的綠色作為單狗顏色
color_list = [
'#FF5733', # 珊瑚紅
'#28A745', # 深綠色
'#3357FF', # 寶藍色
'#FF33F5', # 粉紫色
'#FFB733', # 橙黃色
'#33FFF5', # 青藍色
'#A233FF', # 紫色
'#FF3333', # 紅色
'#33FFB7', # 青綠色
'#FFE033' # 金黃色
]
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
dogs_info = ""
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
color = single_dog_color if len(dogs) == 1 else color_list[i % len(color_list)]
# 優化圖片上的標記
draw.rectangle(box, outline=color, width=4)
label = f"Dog {i+1}"
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
label_x = box[0] + 5
label_y = box[1] + 5
draw.rectangle(
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
fill='white',
outline=color,
width=2
)
draw.text((label_x, label_y), label, fill=color, font=font)
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
combined_confidence = detection_confidence * top1_prob
# 開始資訊卡片
dogs_info += f'<div class="dog-info-card" style="border-left: 6px solid {color};">'
if combined_confidence < 0.2:
dogs_info += f'''
<div class="dog-info-header" style="background-color: {color}10;">
<span class="dog-label" style="color: {color};">Dog {i+1}</span>
</div>
<div class="breed-info">
<p class="warning-message">
<span class="icon">⚠️</span>
The image is unclear or the breed is not in the dataset. Please upload a clearer image.
</p>
</div>
'''
elif top1_prob >= 0.45:
breed = topk_breeds[0]
description = get_dog_description(breed)
dogs_info += f'''
<div class="dog-info-header" style="background-color: {color}10;">
<span class="dog-label" style="color: {color};">
<span class="icon">🐾</span> {breed}
</span>
</div>
<div class="breed-info">
<h2 class="section-title">
<span class="icon">📋</span> BASIC INFORMATION
</h2>
<div class="info-section">
<div class="info-item">
<span class="tooltip tooltip-left">
<span class="icon">📏</span>
<span class="label">Size:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Size Categories:</strong><br>
• Small: Under 20 pounds<br>
• Medium: 20-60 pounds<br>
• Large: Over 60 pounds<br>
• Giant: Over 100 pounds<br>
• Varies: Depends on variety
</span>
</span>
<span class="value">{description['Size']}</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">⏳</span>
<span class="label">Lifespan:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Average Lifespan:</strong><br>
• Short: 6-8 years<br>
• Average: 10-15 years<br>
• Long: 12-20 years<br>
• Varies by size: Larger breeds typically have shorter lifespans
</span>
</span>
<span class="value">{description['Lifespan']}</span>
</div>
</div>
<h2 class="section-title">
<span class="icon">🐕</span> TEMPERAMENT & PERSONALITY
</h2>
<div class="temperament-section">
<span class="tooltip">
<span class="value">{description['Temperament']}</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Temperament Guide:</strong><br>
• Describes the dog's natural behavior and personality<br>
• Important for matching with owner's lifestyle<br>
• Can be influenced by training and socialization
</span>
</span>
</div>
<h2 class="section-title">
<span class="icon">💪</span> CARE REQUIREMENTS
</h2>
<div class="care-section">
<div class="info-item">
<span class="tooltip tooltip-left">
<span class="icon">🏃</span>
<span class="label">Exercise:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Exercise Needs:</strong><br>
• Low: Short walks and play sessions<br>
• Moderate: 1-2 hours of daily activity<br>
• High: Extensive exercise (2+ hours/day)<br>
• Very High: Constant activity and mental stimulation needed
</span>
</span>
<span class="value">{description['Exercise Needs']}</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">✂️</span>
<span class="label">Grooming:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Grooming Requirements:</strong><br>
• Low: Basic brushing, occasional baths<br>
• Moderate: Weekly brushing, occasional grooming<br>
• High: Daily brushing, frequent professional grooming needed<br>
• Professional care recommended for all levels
</span>
</span>
<span class="value">{description['Grooming Needs']}</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">⭐</span>
<span class="label">Care Level:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Care Level Explained:</strong><br>
• Low: Basic care and attention needed<br>
• Moderate: Regular care and routine needed<br>
• High: Significant time and attention needed<br>
• Very High: Extensive care, training and attention required
</span>
</span>
<span class="value">{description['Care Level']}</span>
</div>
</div>
<h2 class="section-title">
<span class="icon">👨👩👧👦</span> FAMILY COMPATIBILITY
</h2>
<div class="family-section">
<div class="info-item">
<span class="tooltip">
<span class="icon"></span>
<span class="label">Good with Children:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Child Compatibility:</strong><br>
• Yes: Excellent with kids, patient and gentle<br>
• Moderate: Good with older children<br>
• No: Better suited for adult households
</span>
</span>
<span class="value">{description['Good with Children']}</span>
</div>
</div>
<h2 class="section-title">
<span class="icon">📝</span> DESCRIPTION
</h2>
<div class="description-section">
<p>{description.get('Description', '')}</p>
</div>
<div class="action-section">
<a href="{get_akc_breeds_link(breed)}" target="_blank" class="akc-button">
<span class="icon">🌐</span>
Learn more about {breed} on AKC website
</a>
</div>
</div>
'''
else:
dogs_info += f'''
<div class="dog-info-header" style="background-color: {color}10;">
<span class="dog-label" style="color: {color};">Dog {i+1}</span>
</div>
<div class="breed-info">
<div class="model-uncertainty-note">
<span class="icon">ℹ️</span>
Note: The model is showing some uncertainty in its predictions.
Here are the most likely breeds based on the available visual features.
</div>
<div class="breeds-list">
'''
for j, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
description = get_dog_description(breed)
dogs_info += f'''
<div class="breed-option uncertainty-mode">
<div class="breed-header">
<span class="option-number">Option {j+1}</span>
<span class="breed-name">{breed}</span>
<span class="confidence-badge" style="background-color: {color}20; color: {color};">
Confidence: {prob}
</span>
</div>
<div class="breed-content">
{format_description_html(description, breed)}
</div>
</div>
'''
dogs_info += '</div></div>'
dogs_info += '</div>'
html_output = f"""
<div class="dog-info-card">
{dogs_info}
</div>
"""
initial_state = {
"dogs_info": dogs_info,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"html_output": html_output
}
return html_output, annotated_image, initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return error_msg, None, None
def show_details_html(choice, previous_output, initial_state):
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
formatted_description = format_description_html(description, breed)
html_output = f"""
<div class="dog-info">
<h2>{breed}</h2>
{formatted_description}
</div>
"""
initial_state["current_description"] = html_output
initial_state["original_buttons"] = initial_state.get("buttons", [])
return html_output, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return f"<p style='color: red;'>{error_msg}</p>", gr.update(visible=True), initial_state
def format_description_html(description, breed):
html = "<ul style='list-style-type: none; padding-left: 0;'>"
if isinstance(description, dict):
for key, value in description.items():
if key != "Breed": # 跳過重複的品種顯示
if key == "Size":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Size Categories:</strong><br>
• Small: Under 20 pounds<br>
• Medium: 20-60 pounds<br>
• Large: Over 60 pounds
</span>
</span> {value}
</li>
'''
elif key == "Exercise Needs":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Exercise Needs:</strong><br>
• High: 2+ hours of daily exercise<br>
• Moderate: 1-2 hours of daily activity<br>
• Low: Short walks and play sessions
</span>
</span> {value}
</li>
'''
elif key == "Grooming Needs":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Grooming Requirements:</strong><br>
• High: Daily brushing, regular professional care<br>
• Moderate: Weekly brushing, occasional grooming<br>
• Low: Minimal brushing, basic maintenance
</span>
</span> {value}
</li>
'''
elif key == "Care Level":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Care Level Explained:</strong><br>
• High: Needs significant training and attention<br>
• Moderate: Regular care and routine needed<br>
• Low: More independent, basic care sufficient
</span>
</span> {value}
</li>
'''
elif key == "Good with Children":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Child Compatibility:</strong><br>
• Yes: Excellent with kids, patient and gentle<br>
• Moderate: Good with older children<br>
• No: Better suited for adult households
</span>
</span> {value}
</li>
'''
elif key == "Lifespan":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Average Lifespan:</strong><br>
• Short: 6-8 years<br>
• Average: 10-15 years<br>
• Long: 12-20 years
</span>
</span> {value}
</li>
'''
elif key == "Temperament":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Temperament Guide:</strong><br>
• Describes the dog's natural behavior<br>
• Important for matching with owner
</span>
</span> {value}
</li>
'''
else:
# 其他欄位保持原樣顯示
html += f"<li style='margin-bottom: 10px;'><strong>{key}:</strong> {value}</li>"
else:
html += f"<li>{description}</li>"
html += "</ul>"
# 添加AKC連結
html += f'''
<div class="action-section">
<a href="{get_akc_breeds_link(breed)}" target="_blank" class="akc-button">
<span class="icon">🌐</span>
Learn more about {breed} on AKC website
</a>
</div>
'''
return html
with gr.Blocks(css="""
.dog-info-card {
border: 1px solid #e1e4e8;
margin: 40px 0; /* 增加卡片間距 */
padding: 0;
border-radius: 12px;
box-shadow: 0 2px 12px rgba(0,0,0,0.08);
overflow: hidden;
transition: all 0.3s ease;
background: white;
}
.dog-info-card:hover {
box-shadow: 0 4px 16px rgba(0,0,0,0.12);
}
.dog-info-header {
padding: 24px 28px; /* 增加內距 */
margin: 0;
font-size: 22px;
font-weight: bold;
border-bottom: 1px solid #e1e4e8;
}
.breed-info {
padding: 28px; /* 增加整體內距 */
line-height: 1.6;
}
.section-title {
font-size: 1.3em;
font-weight: 700;
color: #2c3e50;
margin: 32px 0 20px 0;
padding: 12px 0;
border-bottom: 2px solid #e1e4e8;
text-transform: uppercase;
letter-spacing: 0.5px;
display: flex;
align-items: center;
gap: 8px;
position: relative;
}
.icon {
font-size: 1.2em;
display: inline-flex;
align-items: center;
justify-content: center;
}
.info-section, .care-section, .family-section {
display: flex;
flex-wrap: wrap;
gap: 16px;
margin-bottom: 28px; /* 增加底部間距 */
padding: 20px; /* 增加內距 */
background: #f8f9fa;
border-radius: 12px;
border: 1px solid #e1e4e8; /* 添加邊框 */
}
.info-item {
background: white; /* 改為白色背景 */
padding: 14px 18px; /* 增加內距 */
border-radius: 8px;
display: flex;
align-items: center;
gap: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
border: 1px solid #e1e4e8;
flex: 1 1 auto;
min-width: 200px;
}
.label {
color: #666;
font-weight: 600;
font-size: 1.1rem;
}
.value {
color: #2c3e50;
font-weight: 500;
font-size: 1.1rem;
}
.temperament-section {
background: #f8f9fa;
padding: 20px; /* 增加內距 */
border-radius: 12px;
margin-bottom: 28px; /* 增加間距 */
color: #444;
border: 1px solid #e1e4e8; /* 添加邊框 */
}
.description-section {
background: #f8f9fa;
padding: 24px; /* 增加內距 */
border-radius: 12px;
margin: 28px 0; /* 增加上下間距 */
line-height: 1.8;
color: #444;
border: 1px solid #e1e4e8; /* 添加邊框 */
fontsize: 1.1rem;
}
.description-section p {
margin: 0;
padding: 0;
text-align: justify; /* 文字兩端對齊 */
word-wrap: break-word; /* 確保長單字會換行 */
white-space: pre-line; /* 保留換行但合併空白 */
max-width: 100%; /* 確保不會超出容器 */
}
.action-section {
margin-top: 24px;
text-align: center;
}
.akc-button,
.breed-section .akc-link,
.breed-option .akc-link {
display: inline-flex;
align-items: center;
padding: 14px 28px;
background: linear-gradient(145deg, #00509E, #003F7F);
color: white;
border-radius: 12px; /* 增加圓角 */
text-decoration: none;
gap: 12px; /* 增加圖標和文字間距 */
transition: all 0.3s ease;
font-weight: 600;
font-size: 1.1em;
box-shadow:
0 2px 4px rgba(0,0,0,0.1),
inset 0 1px 1px rgba(255,255,255,0.1);
border: 1px solid rgba(255,255,255,0.1);
}
.akc-button:hover,
.breed-section .akc-link:hover,
.breed-option .akc-link:hover {
background: linear-gradient(145deg, #003F7F, #00509E);
transform: translateY(-2px);
color: white;
box-shadow:
0 6px 12px rgba(0,0,0,0.2),
inset 0 1px 1px rgba(255,255,255,0.2);
border: 1px solid rgba(255,255,255,0.2);
}
.icon {
font-size: 1.3em;
filter: drop-shadow(0 1px 1px rgba(0,0,0,0.2));
}
.warning-message {
display: flex;
align-items: center;
gap: 8px;
color: #ff3b30;
font-weight: 500;
margin: 0;
padding: 16px;
background: #fff5f5;
border-radius: 8px;
}
.model-uncertainty-note {
display: flex;
align-items: center;
gap: 12px;
padding: 16px;
background-color: #f8f9fa;
border-left: 4px solid #6c757d;
margin-bottom: 20px;
color: #495057;
border-radius: 4px;
}
.breeds-list {
display: flex;
flex-direction: column;
gap: 20px;
}
.breed-option {
background: white;
border: 1px solid #e1e4e8;
border-radius: 8px;
overflow: hidden;
}
.breed-header {
display: flex;
align-items: center;
padding: 16px;
background: #f8f9fa;
gap: 12px;
border-bottom: 1px solid #e1e4e8;
}
.option-number {
font-weight: 600;
color: #666;
padding: 4px 8px;
background: #e1e4e8;
border-radius: 4px;
}
.breed-name {
font-size: 1.5em;
font-weight: bold;
color: #2c3e50;
flex-grow: 1;
}
.confidence-badge {
padding: 4px 12px;
border-radius: 20px;
font-size: 0.9em;
font-weight: 500;
}
.breed-content {
padding: 20px;
}
.breed-content li {
margin-bottom: 8px;
display: flex;
align-items: flex-start; /* 改為頂部對齊 */
gap: 8px;
flex-wrap: wrap; /* 允許內容換行 */
}
.breed-content li strong {
flex: 0 0 auto; /* 不讓標題縮放 */
min-width: 100px; /* 給標題一個固定最小寬度 */
}
ul {
padding-left: 0;
margin: 0;
list-style-type: none;
}
li {
margin-bottom: 8px;
display: flex;
align-items: center;
gap: 8px;
}
.akc-link {
color: white;
text-decoration: none;
font-weight: 600;
font-size: 1.1em;
transition: all 0.3s ease;
}
.akc-link:hover {
text-decoration: underline;
color: #D3E3F0;
}
.tooltip {
position: relative;
display: inline-flex;
align-items: center;
gap: 4px;
cursor: help;
}
.tooltip .tooltip-icon {
font-size: 14px;
color: #666;
}
.tooltip .tooltip-text {
visibility: hidden;
width: 250px;
background-color: rgba(44, 62, 80, 0.95);
color: white;
text-align: left;
border-radius: 8px;
padding: 8px 10px;
position: absolute;
z-index: 100;
bottom: 150%;
left: 50%;
transform: translateX(-50%);
opacity: 0;
transition: all 0.3s ease;
font-size: 14px;
line-height: 1.3;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2);
border: 1px solid rgba(255, 255, 255, 0.1)
margin-bottom: 10px;
}
.tooltip.tooltip-left .tooltip-text {
left: 0;
transform: translateX(0);
}
.tooltip.tooltip-right .tooltip-text {
left: auto;
right: 0;
transform: translateX(0);
}
.tooltip-text strong {
color: white !important;
background-color: transparent !important;
display: block; /* 讓標題獨立一行 */
margin-bottom: 2px; /* 增加標題下方間距 */
padding-bottom: 2px; /* 加入小間距 */
border-bottom: 1px solid rgba(255,255,255,0.2);
}
.tooltip-text {
font-size: 13px; /* 稍微縮小字體 */
}
/* 調整列表符號和文字的間距 */
.tooltip-text ul {
margin: 0;
padding-left: 15px; /* 減少列表符號的縮進 */
}
.tooltip-text li {
margin-bottom: 1px; /* 減少列表項目間的間距 */
}
.tooltip-text br {
line-height: 1.2; /* 減少行距 */
}
.tooltip .tooltip-text::after {
content: "";
position: absolute;
top: 100%;
left: 20%; /* 調整箭頭位置 */
margin-left: -5px;
border-width: 5px;
border-style: solid;
border-color: rgba(44, 62, 80, 0.95) transparent transparent transparent;
}
.tooltip-left .tooltip-text::after {
left: 20%;
}
/* 右側箭頭 */
.tooltip-right .tooltip-text::after {
left: 80%;
}
.tooltip:hover .tooltip-text {
visibility: visible;
opacity: 1;
}
.tooltip .tooltip-text::after {
content: "";
position: absolute;
top: 100%;
left: 50%;
transform: translateX(-50%);
border-width: 8px;
border-style: solid;
border-color: rgba(44, 62, 80, 0.95) transparent transparent transparent;
}
.uncertainty-mode .tooltip .tooltip-text {
position: absolute;
left: 100%;
bottom: auto;
top: 50%;
transform: translateY(-50%);
margin-left: 10px;
z-index: 1000; /* 確保提示框在最上層 */
}
.uncertainty-mode .tooltip .tooltip-text::after {
content: "";
position: absolute;
top: 50%;
right: 100%;
transform: translateY(-50%);
border-width: 5px;
border-style: solid;
border-color: transparent rgba(44, 62, 80, 0.95) transparent transparent;
}
.uncertainty-mode .breed-content {
font-size: 1.1rem; /* 增加字體大小 */
}
.description-section,
.description-section p,
.temperament-section,
.temperament-section .value,
.info-item,
.info-item .value,
.breed-content {
font-size: 1.1rem !important; /* 使用 !important 確保覆蓋其他樣式 */
}
.recommendation-card {
margin-bottom: 40px;
}
.compatibility-scores {
background: #f8f9fa;
padding: 24px;
border-radius: 12px;
margin: 20px 0;
}
.score-item {
margin: 15px 0;
}
.progress-bar {
height: 12px;
background-color: #e9ecef;
border-radius: 6px;
overflow: hidden;
margin: 8px 0;
}
.progress {
height: 100%;
background: linear-gradient(90deg, #34C759, #30B350);
border-radius: 6px;
transition: width 0.6s ease;
}
.percentage {
float: right;
color: #34C759;
font-weight: 600;
}
.breed-details-section {
margin: 30px 0;
}
.subsection-title {
font-size: 1.2em;
color: #2c3e50;
margin-bottom: 20px;
display: flex;
align-items: center;
gap: 8px;
}
.details-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 20px;
background: #f8f9fa;
padding: 20px;
border-radius: 12px;
border: 1px solid #e1e4e8;
}
.detail-item {
background: white;
padding: 15px;
border-radius: 8px;
border: 1px solid #e1e4e8;
}
.description-text {
line-height: 1.8;
color: #444;
margin: 0;
padding: 24px 30px; /* 調整內部間距,從 20px 改為 24px 30px */
background: #f8f9fa;
border-radius: 12px;
border: 1px solid #e1e4e8;
text-align: justify; /* 添加文字對齊 */
word-wrap: break-word; /* 確保長文字會換行 */
word-spacing: 1px; /* 加入字間距 */
}
/* 工具提示改進 */
.tooltip {
position: relative;
display: inline-flex;
align-items: center;
gap: 4px;
cursor: help;
padding: 5px 0;
}
.tooltip .tooltip-text {
visibility: hidden;
width: 280px;
background-color: rgba(44, 62, 80, 0.95);
color: white;
text-align: left;
border-radius: 8px;
padding: 12px 15px;
position: absolute;
z-index: 1000;
bottom: calc(100% + 15px);
left: 50%;
transform: translateX(-50%);
opacity: 0;
transition: all 0.3s ease;
font-size: 14px;
line-height: 1.4;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2);
white-space: normal;
}
.tooltip:hover .tooltip-text {
visibility: visible;
opacity: 1;
}
.score-badge {
background-color: #34C759;
color: white;
padding: 6px 12px;
border-radius: 20px;
font-size: 0.9em;
margin-left: 10px;
font-weight: 500;
box-shadow: 0 2px 4px rgba(52, 199, 89, 0.2);
}
.bonus-score .tooltip-text {
width: 250px;
line-height: 1.4;
padding: 10px;
}
.bonus-score .progress {
background: linear-gradient(90deg, #48bb78, #68d391);
}
.health-section {
margin: 25px 0;
padding: 24px;
background-color: #f8f9fb;
border-radius: 12px;
border: 1px solid #e1e4e8;
}
.health-section .subsection-title {
font-size: 1.3em;
font-weight: 600;
margin-bottom: 20px;
display: flex;
align-items: center;
gap: 8px;
color: #2c3e50;
}
.health-info {
background-color: white;
padding: 24px;
border-radius: 8px;
margin: 15px 0;
border: 1px solid #e1e4e8;
}
.health-details {
font-size: 1.1rem;
line-height: 1.6;
}
.health-details h4 {
color: #2c3e50;
font-size: 1.15rem;
font-weight: 600;
margin: 20px 0 15px 0;
}
.health-details h4:first-child {
margin-top: 0;
}
.health-details ul {
list-style-type: none;
padding-left: 0;
margin: 0 0 25px 0;
}
.health-details ul li {
margin-bottom: 12px;
padding-left: 20px;
position: relative;
}
.health-details ul li:before {
content: "•";
position: absolute;
left: 0;
color: #2c3e50;
}
.health-disclaimer {
margin-top: 20px;
color: #666;
font-size: 1.05rem;
line-height: 1.6;
padding-top: 20px;
border-top: 1px solid #e1e4e8;
}
.health-disclaimer p {
margin: 8px 0;
padding-left: 15px;
position: relative;
}
.health-disclaimer p:before {
content: "»";
position: absolute;
left: 0;
color: #666;
}
""") as iface:
gr.HTML("""
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
🐾 PawMatch AI
</h1>
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
Your Smart Dog Breed Guide
</h2>
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
<p style='color: #718096; font-size: 0.9em;'>
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
</p>
</header>
""")
# 使用 Tabs 來分隔兩個功能
with gr.Tabs():
# 第一個 Tab:原有的辨識功能
with gr.TabItem("Breed Detection"):
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed and provide detailed information!</p>")
gr.HTML("<p style='text-align: center; color: #666; font-size: 0.9em;'>Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.</p>")
with gr.Row():
input_image = gr.Image(label="Upload a dog image", type="pil")
output_image = gr.Image(label="Annotated Image")
output = gr.HTML(label="Prediction Results")
initial_state = gr.State()
input_image.change(
predict,
inputs=input_image,
outputs=[output, output_image, initial_state]
)
gr.Examples(
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
inputs=input_image
)
# 第二個 Tab:品種比較功能
with gr.TabItem("Breed Comparison"):
gr.HTML("<p style='text-align: center;'>Select two dog breeds to compare their characteristics and care requirements.</p>")
with gr.Row():
breed1_dropdown = gr.Dropdown(
choices=dog_breeds,
label="Select First Breed",
value="Golden_Retriever"
)
breed2_dropdown = gr.Dropdown(
choices=dog_breeds,
label="Select Second Breed",
value="Border_Collie"
)
compare_btn = gr.Button("Compare Breeds")
comparison_output = gr.HTML(label="Comparison Results")
def show_comparison(breed1, breed2):
if not breed1 or not breed2:
return "Please select two breeds to compare"
breed1_info = get_dog_description(breed1)
breed2_info = get_dog_description(breed2)
html_output = f"""
<div class="dog-info-card">
<div class="comparison-grid" style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
<div class="breed-info">
<h2 class="section-title">
<span class="icon">🐕</span> {breed1.replace('_', ' ')}
</h2>
<div class="info-section">
<div class="info-item">
<span class="tooltip">
<span class="icon">📏</span>
<span class="label">Size:</span>
<span class="value">{breed1_info['Size']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">🏃</span>
<span class="label">Exercise Needs:</span>
<span class="value">{breed1_info['Exercise Needs']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">✂️</span>
<span class="label">Grooming:</span>
<span class="value">{breed1_info['Grooming Needs']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">👨👩👧👦</span>
<span class="label">Good with Children:</span>
<span class="value">{breed1_info['Good with Children']}</span>
</span>
</div>
</div>
</div>
<div class="breed-info">
<h2 class="section-title">
<span class="icon">🐕</span> {breed2.replace('_', ' ')}
</h2>
<div class="info-section">
<div class="info-item">
<span class="tooltip">
<span class="icon">📏</span>
<span class="label">Size:</span>
<span class="value">{breed2_info['Size']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">🏃</span>
<span class="label">Exercise Needs:</span>
<span class="value">{breed2_info['Exercise Needs']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">✂️</span>
<span class="label">Grooming:</span>
<span class="value">{breed2_info['Grooming Needs']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">👨👩👧👦</span>
<span class="label">Good with Children:</span>
<span class="value">{breed2_info['Good with Children']}</span>
</span>
</div>
</div>
</div>
</div>
</div>
"""
return html_output
compare_btn.click(
show_comparison,
inputs=[breed1_dropdown, breed2_dropdown],
outputs=comparison_output
)
# 第三個 Tab:品種推薦功能
with gr.TabItem("Breed Recommendation"):
gr.HTML("<p style='text-align: center;'>Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!</p>")
with gr.Row():
with gr.Column():
living_space = gr.Radio(
choices=["apartment", "house_small", "house_large"],
label="What type of living space do you have?",
info="Choose your current living situation",
value="apartment"
)
exercise_time = gr.Slider(
minimum=0,
maximum=180,
value=60,
label="Daily exercise time (minutes)",
info="Consider walks, play time, and training"
)
grooming_commitment = gr.Radio(
choices=["low", "medium", "high"],
label="Grooming commitment level",
info="Low: monthly, Medium: weekly, High: daily",
value="medium"
)
with gr.Column():
experience_level = gr.Radio(
choices=["beginner", "intermediate", "advanced"],
label="Dog ownership experience",
info="Be honest - this helps find the right match",
value="beginner"
)
has_children = gr.Checkbox(
label="Have children at home",
info="Helps recommend child-friendly breeds"
)
noise_tolerance = gr.Radio(
choices=["low", "medium", "high"],
label="Noise tolerance level",
info="Some breeds are more vocal than others",
value="medium"
)
# 設置按鈕的點擊事件
get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
recommendation_output = gr.HTML(label="Breed Recommendations")
def process_recommendations(living_space, exercise_time, grooming_commitment,
experience_level, has_children, noise_tolerance):
try:
user_prefs = UserPreferences(
living_space=living_space,
exercise_time=exercise_time,
grooming_commitment=grooming_commitment,
experience_level=experience_level,
has_children=has_children,
noise_tolerance=noise_tolerance,
space_for_play=True if living_space != "apartment" else False,
other_pets=False,
climate="moderate"
)
recommendations = get_breed_recommendations(user_prefs)
return format_recommendation_html(recommendations)
except Exception as e:
print(f"Error in process_recommendations: {str(e)}")
return f"An error occurred: {str(e)}"
# 這行是關鍵 - 確保按鈕點擊事件有正確連接到處理函數
get_recommendations_btn.click(
fn=process_recommendations, # 處理函數
inputs=[
living_space,
exercise_time,
grooming_commitment,
experience_level,
has_children,
noise_tolerance
],
outputs=recommendation_output # 輸出結果的位置
)
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
if __name__ == "__main__":
iface.launch(share=True) |