File size: 15,382 Bytes
6166858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

import torch
import numpy as np
from typing import List, Dict, Tuple, Optional
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import dog_data
from scoring_calculation_system import UserPreferences
from sentence_transformers import SentenceTransformer, util

class SmartBreedMatcher:
    def __init__(self, dog_data: List[Tuple]):
        self.dog_data = dog_data
        self.model = SentenceTransformer('all-mpnet-base-v2')
        self._embedding_cache = {}

    def _get_cached_embedding(self, text: str) -> torch.Tensor:
        if text not in self._embedding_cache:
            self._embedding_cache[text] = self.model.encode(text)
        return self._embedding_cache[text]

    def _categorize_breeds(self) -> Dict:
        """自動將狗品種分類"""
        categories = {
            'working_dogs': [],
            'herding_dogs': [],
            'hunting_dogs': [],
            'companion_dogs': [],
            'guard_dogs': []
        }

        for breed_info in self.dog_data:
            description = breed_info[9].lower()
            temperament = breed_info[4].lower()

            # 根據描述和性格特徵自動分類
            if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']):
                categories['herding_dogs'].append(breed_info[1])
            elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']):
                categories['hunting_dogs'].append(breed_info[1])
            elif any(word in description for word in ['companion', 'toy', 'family', 'lap']):
                categories['companion_dogs'].append(breed_info[1])
            elif any(word in description for word in ['guard', 'protection', 'watchdog']):
                categories['guard_dogs'].append(breed_info[1])
            elif any(word in description for word in ['working', 'draft', 'cart']):
                categories['working_dogs'].append(breed_info[1])

        return categories

    def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]:
        """找出與指定品種最相似的其他品種"""
        target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
        if not target_breed:
            return []

        # 獲取目標品種的特徵
        target_features = {
            'breed_name': target_breed[1],  # 添加品種名稱
            'size': target_breed[2],
            'temperament': target_breed[4],
            'exercise': target_breed[7],
            'description': target_breed[9]
        }

        similarities = []
        for breed in self.dog_data:
            if breed[1] != breed_name:
                breed_features = {
                    'breed_name': breed[1],  # 添加品種名稱
                    'size': breed[2],
                    'temperament': breed[4],
                    'exercise': breed[7],
                    'description': breed[9]
                }

                similarity_score = self._calculate_breed_similarity(target_features, breed_features)
                similarities.append((breed[1], similarity_score))

        return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]


    def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict) -> float:
        """計算兩個品種之間的相似度,包含健康和噪音因素"""
        # 計算描述文本的相似度
        desc1_embedding = self._get_cached_embedding(breed1_features['description'])
        desc2_embedding = self._get_cached_embedding(breed2_features['description'])
        description_similarity = float(util.pytorch_cos_sim(desc1_embedding, desc2_embedding))

        # 基本特徵相似度
        size_similarity = 1.0 if breed1_features['size'] == breed2_features['size'] else 0.5
        exercise_similarity = 1.0 if breed1_features['exercise'] == breed2_features['exercise'] else 0.5

        # 性格相似度
        temp1_embedding = self._get_cached_embedding(breed1_features['temperament'])
        temp2_embedding = self._get_cached_embedding(breed2_features['temperament'])
        temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))

        # 健康分數相似度
        health_score1 = self._calculate_health_score(breed1_features['breed_name'])
        health_score2 = self._calculate_health_score(breed2_features['breed_name'])
        health_similarity = 1.0 - abs(health_score1 - health_score2)

        # 噪音水平相似度
        noise_similarity = self._calculate_noise_similarity(
            breed1_features['breed_name'],
            breed2_features['breed_name']
        )

        # 加權計算
        weights = {
            'description': 0.25,
            'temperament': 0.20,
            'exercise': 0.2,
            'size': 0.05,
            'health': 0.15,
            'noise': 0.15
        }

        final_similarity = (
            description_similarity * weights['description'] +
            temperament_similarity * weights['temperament'] +
            exercise_similarity * weights['exercise'] +
            size_similarity * weights['size'] +
            health_similarity * weights['health'] +
            noise_similarity * weights['noise']
        )

        return final_similarity


    def _calculate_final_scores(self, breed_name: str, base_scores: Dict,
                              smart_score: float, is_preferred: bool,
                              similarity_score: float = 0.0) -> Dict:
        """
        計算最終分數,包含基礎分數和獎勵分數

        Args:
            breed_name: 品種名稱
            base_scores: 基礎評分 (空間、運動等)
            smart_score: 智能匹配分數
            is_preferred: 是否為用戶指定品種
            similarity_score: 與指定品種的相似度 (0-1)
        """
        # 基礎權重
        weights = {
            'base': 0.6,      # 基礎分數權重
            'smart': 0.25,    # 智能匹配權重
            'bonus': 0.15     # 獎勵分數權重
        }

        # 計算基礎分數
        base_score = base_scores.get('overall', 0.7)

        # 計算獎勵分數
        bonus_score = 0.0
        if is_preferred:
            # 用戶指定品種獲得最高獎勵
            bonus_score = 0.95
        elif similarity_score > 0:
            # 相似品種獲得部分獎勵,但不超過80%的最高獎勵
            bonus_score = min(0.8, similarity_score) * 0.95

        # 計算最終分數
        final_score = (
            base_score * weights['base'] +
            smart_score * weights['smart'] +
            bonus_score * weights['bonus']
        )

        # 更新各項分數
        scores = base_scores.copy()

        # 如果是用戶指定品種,稍微提升各項基礎分數,但保持合理範圍
        if is_preferred:
            for key in scores:
                if key != 'overall':
                    scores[key] = min(1.0, scores[key] * 1.1)  # 最多提升10%

        # 為相似品種調整分數
        elif similarity_score > 0:
            boost_factor = 1.0 + (similarity_score * 0.05)  # 最多提升5%
            for key in scores:
                if key != 'overall':
                    scores[key] = min(0.95, scores[key] * boost_factor)  # 確保不超過95%

        return {
            'final_score': round(final_score, 4),
            'base_score': round(base_score, 4),
            'bonus_score': round(bonus_score, 4),
            'scores': {k: round(v, 4) for k, v in scores.items()}
        }

    def _calculate_health_score(self, breed_name: str) -> float:
        """計算品種的健康分數"""
        if breed_name not in breed_health_info:
            return 0.5

        health_notes = breed_health_info[breed_name]['health_notes'].lower()

        # 嚴重健康問題
        severe_conditions = [
            'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
            'bloat', 'progressive', 'syndrome'
        ]

        # 中等健康問題
        moderate_conditions = [
            'allergies', 'infections', 'thyroid', 'luxation',
            'skin problems', 'ear'
        ]

        severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
        moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)

        health_score = 1.0
        health_score -= (severe_count * 0.1)
        health_score -= (moderate_count * 0.05)

        # 特殊條件調整(根據用戶偏好)
        if hasattr(self, 'user_preferences'):
            if self.user_preferences.has_children:
                if 'requires frequent' in health_notes or 'regular monitoring' in health_notes:
                    health_score *= 0.9

            if self.user_preferences.health_sensitivity == 'high':
                health_score *= 0.9

        return max(0.3, min(1.0, health_score))



    def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float:
        """計算兩個品種的噪音相似度"""
        noise_levels = {
            'Low': 1,
            'Moderate': 2,
            'High': 3,
            'Unknown': 2  # 默認為中等
        }

        noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown')
        noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown')

        # 獲取數值級別
        level1 = noise_levels.get(noise1, 2)
        level2 = noise_levels.get(noise2, 2)

        # 計算差異並歸一化
        difference = abs(level1 - level2)
        similarity = 1.0 - (difference / 2)  # 最大差異是2,所以除以2來歸一化

        return similarity

    def _general_matching(self, description: str, top_n: int = 10) -> List[Dict]:
        """基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
        matches = []
        # 預先計算描述的 embedding 並快取
        desc_embedding = self._get_cached_embedding(description)
        
        for breed in self.dog_data:
            breed_name = breed[1]
            breed_description = breed[9]
            temperament = breed[4]
            
            # 使用快取計算相似度
            breed_desc_embedding = self._get_cached_embedding(breed_description)
            breed_temp_embedding = self._get_cached_embedding(temperament)
            
            desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
            temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
            
            # 其餘計算保持不變
            noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
            health_score = self._calculate_health_score(breed_name)
            health_similarity = 1.0 - abs(health_score - 0.8)
            
            weights = {
                'description': 0.35,
                'temperament': 0.25,
                'noise': 0.2,
                'health': 0.2
            }
            
            final_score = (
                desc_similarity * weights['description'] +
                temp_similarity * weights['temperament'] +
                noise_similarity * weights['noise'] +
                health_similarity * weights['health']
            )
            
            matches.append({
                'breed': breed_name,
                'score': final_score,
                'is_preferred': False,
                'similarity': final_score,
                'reason': "Matched based on description, temperament, noise level, and health score"
            })
        
        return sorted(matches, key=lambda x: -x['score'])[:top_n]


    def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
        """根據用戶描述匹配最適合的品種"""
        preferred_breed = self._detect_breed_preference(description)

        matches = []
        if preferred_breed:
            similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n)

            # 首先添加偏好品種
            breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None)
            if breed_info:
                health_score = self._calculate_health_score(preferred_breed)
                noise_info = breed_noise_info.get(preferred_breed, {
                    "noise_level": "Unknown",
                    "noise_notes": "No noise information available"
                })

                # 偏好品種必定是最高分
                matches.append({
                    'breed': preferred_breed,
                    'score': 1.0,
                    'is_preferred': True,
                    'similarity': 1.0,
                    'health_score': health_score,
                    'noise_level': noise_info['noise_level'],
                    'reason': "Directly matched your preferred breed"
                })

            # 添加相似品種
            for breed_name, similarity in similar_breeds:
                if breed_name != preferred_breed:
                    health_score = self._calculate_health_score(breed_name)
                    noise_info = breed_noise_info.get(breed_name, {
                        "noise_level": "Unknown",
                        "noise_notes": "No noise information available"
                    })

                    # 調整相似品種分數計算
                    base_similarity = similarity * 0.6
                    health_factor = health_score * 0.2
                    noise_factor = self._calculate_noise_similarity(preferred_breed, breed_name) * 0.2

                    # 確保相似品種分數不會超過偏好品種
                    final_score = min(0.95, base_similarity + health_factor + noise_factor)

                    matches.append({
                        'breed': breed_name,
                        'score': final_score,
                        'is_preferred': False,
                        'similarity': similarity,
                        'health_score': health_score,
                        'noise_level': noise_info['noise_level'],
                        'reason': f"Similar to {preferred_breed} in characteristics, health profile, and noise level"
                    })
        else:
            matches = self._general_matching(description, top_n)

        return sorted(matches,
                    key=lambda x: (-int(x.get('is_preferred', False)),
                                -x['score'], # 降序排列
                                x['breed']))[:top_n]

    def _detect_breed_preference(self, description: str) -> Optional[str]:
        """檢測用戶是否提到特定品種"""
        description_lower = description.lower()

        for breed_info in self.dog_data:
            breed_name = breed_info[1]
            normalized_breed = breed_name.lower().replace('_', ' ')

            if any(phrase in description_lower for phrase in [
                f"love {normalized_breed}",
                f"like {normalized_breed}",
                f"prefer {normalized_breed}",
                f"want {normalized_breed}",
                normalized_breed
            ]):
                return breed_name

        return None