PawMatchAI / scoring_calculation_system.py
DawnC's picture
Update scoring_calculation_system.py
ab96cef verified
raw
history blame
61.9 kB
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
import traceback
@dataclass
class UserPreferences:
"""使用者偏好設定的資料結構"""
living_space: str # "apartment", "house_small", "house_large"
yard_access: str # "no_yard", "shared_yard", "private_yard"
exercise_time: int # minutes per day
exercise_type: str # "light_walks", "moderate_activity", "active_training"
grooming_commitment: str # "low", "medium", "high"
experience_level: str # "beginner", "intermediate", "advanced"
time_availability: str # "limited", "moderate", "flexible"
has_children: bool
children_age: str # "toddler", "school_age", "teenager"
noise_tolerance: str # "low", "medium", "high"
space_for_play: bool
other_pets: bool
climate: str # "cold", "moderate", "hot"
health_sensitivity: str = "medium"
barking_acceptance: str = None
def __post_init__(self):
"""在初始化後運行,用於設置派生值"""
if self.barking_acceptance is None:
self.barking_acceptance = self.noise_tolerance
# @staticmethod
# def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
# """計算品種額外加分"""
# bonus = 0.0
# temperament = breed_info.get('Temperament', '').lower()
# # 1. 壽命加分(最高0.05)
# try:
# lifespan = breed_info.get('Lifespan', '10-12 years')
# years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
# longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
# bonus += longevity_bonus
# except:
# pass
# # 2. 性格特徵加分(最高0.15)
# positive_traits = {
# 'friendly': 0.05,
# 'gentle': 0.05,
# 'patient': 0.05,
# 'intelligent': 0.04,
# 'adaptable': 0.04,
# 'affectionate': 0.04,
# 'easy-going': 0.03,
# 'calm': 0.03
# }
# negative_traits = {
# 'aggressive': -0.08,
# 'stubborn': -0.06,
# 'dominant': -0.06,
# 'aloof': -0.04,
# 'nervous': -0.05,
# 'protective': -0.04
# }
# personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
# personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
# bonus += max(-0.15, min(0.15, personality_score))
# # 3. 適應性加分(最高0.1)
# adaptability_bonus = 0.0
# if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
# adaptability_bonus += 0.05
# if 'adaptable' in temperament or 'versatile' in temperament:
# adaptability_bonus += 0.05
# bonus += min(0.1, adaptability_bonus)
# # 4. 家庭相容性(最高0.1)
# if user_prefs.has_children:
# family_traits = {
# 'good with children': 0.06,
# 'patient': 0.05,
# 'gentle': 0.05,
# 'tolerant': 0.04,
# 'playful': 0.03
# }
# unfriendly_traits = {
# 'aggressive': -0.08,
# 'nervous': -0.07,
# 'protective': -0.06,
# 'territorial': -0.05
# }
# # 年齡評估這樣能更細緻
# age_adjustments = {
# 'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
# 'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
# 'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
# }
# adj = age_adjustments.get(user_prefs.children_age,
# {'bonus_mult': 1.0, 'penalty_mult': 1.0})
# family_bonus = sum(value for trait, value in family_traits.items()
# if trait in temperament) * adj['bonus_mult']
# family_penalty = sum(value for trait, value in unfriendly_traits.items()
# if trait in temperament) * adj['penalty_mult']
# bonus += min(0.15, max(-0.2, family_bonus + family_penalty))
# # 5. 專門技能加分(最高0.1)
# skill_bonus = 0.0
# special_abilities = {
# 'working': 0.03,
# 'herding': 0.03,
# 'hunting': 0.03,
# 'tracking': 0.03,
# 'agility': 0.02
# }
# for ability, value in special_abilities.items():
# if ability in temperament.lower():
# skill_bonus += value
# bonus += min(0.1, skill_bonus)
# return min(0.5, max(-0.25, bonus))
@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: UserPreferences) -> float:
"""
計算品種的額外加分,評估品種的特殊特徵對使用者需求的適配性。
這個函數考慮四個主要面向:
1. 壽命評估:考慮飼養的長期承諾
2. 性格特徵評估:評估品種性格與使用者需求的匹配度
3. 環境適應性:評估品種在特定生活環境中的表現
4. 家庭相容性:特別關注品種與家庭成員的互動
"""
bonus = 0.0
temperament = breed_info.get('Temperament', '').lower()
# 壽命評估 - 重新設計以反映更實際的考量
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
avg_years = float(years[0])
# 根據壽命長短給予不同程度的獎勵或懲罰
if avg_years < 8:
bonus -= 0.08 # 短壽命可能帶來情感負擔
elif avg_years < 10:
bonus -= 0.04 # 稍短壽命輕微降低評分
elif avg_years > 13:
bonus += 0.06 # 長壽命適度加分
elif avg_years > 15:
bonus += 0.08 # 特別長壽的品種獲得更多加分
except:
pass
# 性格特徵評估 - 擴充並細化評分標準
positive_traits = {
'friendly': 0.08, # 提高友善性的重要性
'gentle': 0.08, # 溫和性格更受歡迎
'patient': 0.07, # 耐心是重要特質
'intelligent': 0.06, # 聰明但不過分重要
'adaptable': 0.06, # 適應性佳的特質
'affectionate': 0.06, # 親密性很重要
'easy-going': 0.05, # 容易相處的性格
'calm': 0.05 # 冷靜的特質
}
negative_traits = {
'aggressive': -0.15, # 嚴重懲罰攻擊性
'stubborn': -0.10, # 固執性格不易處理
'dominant': -0.10, # 支配性可能造成問題
'aloof': -0.08, # 冷漠性格影響互動
'nervous': -0.08, # 緊張性格需要更多關注
'protective': -0.06 # 過度保護可能有風險
}
# 性格評分計算 - 加入累積效應
personality_score = 0
positive_count = 0
negative_count = 0
for trait, value in positive_traits.items():
if trait in temperament:
personality_score += value
positive_count += 1
for trait, value in negative_traits.items():
if trait in temperament:
personality_score += value
negative_count += 1
# 多重特徵的累積效應
if positive_count > 2:
personality_score *= (1 + (positive_count - 2) * 0.1)
if negative_count > 1:
personality_score *= (1 - (negative_count - 1) * 0.15)
bonus += max(-0.25, min(0.25, personality_score))
# 適應性評估 - 根據具體環境給予更細緻的評分
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.08 # 小型犬更適合公寓
# 環境適應性評估
if 'adaptable' in temperament or 'versatile' in temperament:
if user_prefs.living_space == "apartment":
adaptability_bonus += 0.10 # 適應性在公寓環境更重要
else:
adaptability_bonus += 0.05 # 其他環境仍有加分
# 氣候適應性
description = breed_info.get('Description', '').lower()
climate = user_prefs.climate
if climate == 'hot':
if 'heat tolerant' in description or 'warm climate' in description:
adaptability_bonus += 0.08
elif 'thick coat' in description or 'cold climate' in description:
adaptability_bonus -= 0.10
elif climate == 'cold':
if 'thick coat' in description or 'cold climate' in description:
adaptability_bonus += 0.08
elif 'heat tolerant' in description or 'short coat' in description:
adaptability_bonus -= 0.10
bonus += min(0.15, adaptability_bonus)
# 家庭相容性評估 - 特別關注有孩童的家庭
if user_prefs.has_children:
family_traits = {
'good with children': 0.12, # 提高與孩童相處的重要性
'patient': 0.10,
'gentle': 0.10,
'tolerant': 0.08,
'playful': 0.06
}
unfriendly_traits = {
'aggressive': -0.15, # 加重攻擊性的懲罰
'nervous': -0.12, # 緊張特質可能有風險
'protective': -0.10, # 過度保護性需要注意
'territorial': -0.08 # 地域性可能造成問題
}
# 根據孩童年齡調整評分權重
age_adjustments = {
'toddler': {
'bonus_mult': 0.6, # 降低正面特質的獎勵
'penalty_mult': 1.5 # 加重負面特質的懲罰
},
'school_age': {
'bonus_mult': 1.0,
'penalty_mult': 1.0
},
'teenager': {
'bonus_mult': 1.2, # 提高正面特質的獎勵
'penalty_mult': 0.8 # 降低負面特質的懲罰
}
}
adj = age_adjustments.get(user_prefs.children_age,
{'bonus_mult': 1.0, 'penalty_mult': 1.0})
# 計算家庭相容性分數
family_score = 0
for trait, value in family_traits.items():
if trait in temperament:
family_score += value * adj['bonus_mult']
for trait, value in unfriendly_traits.items():
if trait in temperament:
family_score += value * adj['penalty_mult']
bonus += min(0.20, max(-0.30, family_score))
# 確保總體加分在合理範圍內,但允許更大的變化
return min(0.5, max(-0.35, bonus))
@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
"""計算額外的評估因素"""
factors = {
'versatility': 0.0, # 多功能性
'trainability': 0.0, # 可訓練度
'energy_level': 0.0, # 能量水平
'grooming_needs': 0.0, # 美容需求
'social_needs': 0.0, # 社交需求
'weather_adaptability': 0.0 # 氣候適應性
}
temperament = breed_info.get('Temperament', '').lower()
size = breed_info.get('Size', 'Medium')
# 1. 多功能性評估
versatile_traits = ['intelligent', 'adaptable', 'trainable', 'athletic']
working_roles = ['working', 'herding', 'hunting', 'sporting', 'companion']
trait_score = sum(0.2 for trait in versatile_traits if trait in temperament)
role_score = sum(0.2 for role in working_roles if role in breed_info.get('Description', '').lower())
factors['versatility'] = min(1.0, trait_score + role_score)
# 2. 可訓練度評估
trainable_traits = {
'intelligent': 0.3,
'eager to please': 0.3,
'trainable': 0.2,
'quick learner': 0.2
}
factors['trainability'] = min(1.0, sum(value for trait, value in trainable_traits.items()
if trait in temperament))
# 3. 能量水平評估
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
energy_levels = {
'VERY HIGH': 1.0,
'HIGH': 0.8,
'MODERATE': 0.6,
'LOW': 0.4,
'VARIES': 0.6
}
factors['energy_level'] = energy_levels.get(exercise_needs, 0.6)
# 4. 美容需求評估
grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
grooming_levels = {
'HIGH': 1.0,
'MODERATE': 0.6,
'LOW': 0.3
}
coat_penalty = 0.2 if any(term in breed_info.get('Description', '').lower()
for term in ['long coat', 'double coat']) else 0
factors['grooming_needs'] = min(1.0, grooming_levels.get(grooming_needs, 0.6) + coat_penalty)
# 5. 社交需求評估
social_traits = ['friendly', 'social', 'affectionate', 'people-oriented']
antisocial_traits = ['independent', 'aloof', 'reserved']
social_score = sum(0.25 for trait in social_traits if trait in temperament)
antisocial_score = sum(-0.2 for trait in antisocial_traits if trait in temperament)
factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
# 6. 氣候適應性評估
climate_terms = {
'cold': ['thick coat', 'winter', 'cold climate'],
'hot': ['short coat', 'warm climate', 'heat tolerant'],
'moderate': ['adaptable', 'all climate']
}
climate_matches = sum(1 for term in climate_terms[user_prefs.climate]
if term in breed_info.get('Description', '').lower())
factors['weather_adaptability'] = min(1.0, climate_matches * 0.3 + 0.4) # 基礎分0.4
return factors
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
"""計算品種與使用者條件的相容性分數的優化版本"""
try:
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
print(f"Breed info keys: {breed_info.keys()}")
if 'Size' not in breed_info:
print("Missing Size information")
raise KeyError("Size information missing")
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
# """空間分數計算"""
# # 基礎空間需求矩陣
# base_scores = {
# "Small": {"apartment": 0.95, "house_small": 1.0, "house_large": 0.90},
# "Medium": {"apartment": 0.60, "house_small": 0.90, "house_large": 1.0},
# "Large": {"apartment": 0.30, "house_small": 0.75, "house_large": 1.0},
# "Giant": {"apartment": 0.15, "house_small": 0.55, "house_large": 1.0}
# }
# # 取得基礎分數
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
# # 運動需求調整
# exercise_adjustments = {
# "Very High": -0.15 if living_space == "apartment" else 0,
# "High": -0.10 if living_space == "apartment" else 0,
# "Moderate": 0,
# "Low": 0.05 if living_space == "apartment" else 0
# }
# adjustments = exercise_adjustments.get(exercise_needs.strip(), 0)
# # 院子獎勵
# if has_yard and size in ["Large", "Giant"]:
# adjustments += 0.10
# elif has_yard:
# adjustments += 0.05
# return min(1.0, max(0.1, base_score + adjustments))
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
# 重新設計基礎分數矩陣
base_scores = {
"Small": {
"apartment": 1.0, # 小型犬最適合公寓
"house_small": 0.95, # 在大房子反而稍微降分
"house_large": 0.85 # 可能浪費空間
},
"Medium": {
"apartment": 0.45, # 中型犬在公寓明顯受限
"house_small": 0.85,
"house_large": 1.0
},
"Large": {
"apartment": 0.15, # 大型犬在公寓極不適合
"house_small": 0.60, # 在小房子仍然受限
"house_large": 1.0
},
"Giant": {
"apartment": 0.1, # 更嚴格的限制
"house_small": 0.45,
"house_large": 1.0
}
}
# 取得基礎分數
base_score = base_scores.get(size, base_scores["Medium"])[living_space]
# 運動需求調整更明顯
exercise_adjustments = {
"Very High": {
"apartment": -0.25, # 在公寓更嚴重的懲罰
"house_small": -0.15,
"house_large": -0.05
},
"High": {
"apartment": -0.20,
"house_small": -0.10,
"house_large": 0
},
"Moderate": {
"apartment": -0.10,
"house_small": -0.05,
"house_large": 0
},
"Low": {
"apartment": 0.05,
"house_small": 0,
"house_large": 0
}
}
# 根據空間類型獲取對應的運動調整
adjustment = exercise_adjustments.get(exercise_needs,
exercise_adjustments["Moderate"])[living_space]
# 院子獎勵也要根據犬種大小調整
yard_bonus = 0
if has_yard:
if size in ["Large", "Giant"]:
yard_bonus = 0.20 if living_space != "apartment" else 0.10
elif size == "Medium":
yard_bonus = 0.15 if living_space != "apartment" else 0.08
else:
yard_bonus = 0.10 if living_space != "apartment" else 0.05
final_score = base_score + adjustment + yard_bonus
return min(1.0, max(0.1, final_score))
def calculate_exercise_score(breed_needs: str, user_time: int) -> float:
"""運動需求計算"""
exercise_needs = {
'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180},
'HIGH': {'min': 90, 'ideal': 120, 'max': 150},
'MODERATE': {'min': 45, 'ideal': 60, 'max': 90},
'LOW': {'min': 20, 'ideal': 30, 'max': 45},
'VARIES': {'min': 30, 'ideal': 60, 'max': 90}
}
breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE'])
# 計算匹配度
if user_time >= breed_need['ideal']:
if user_time > breed_need['max']:
return 0.9 # 稍微降分,因為可能過度運動
return 1.0
elif user_time >= breed_need['min']:
return 0.8 + (user_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.2
else:
return max(0.3, 0.8 * (user_time / breed_need['min']))
# def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
# """美容需求計算"""
# # 基礎分數矩陣
# base_scores = {
# "High": {"low": 0.3, "medium": 0.7, "high": 1.0},
# "Moderate": {"low": 0.5, "medium": 0.9, "high": 1.0},
# "Low": {"low": 1.0, "medium": 0.95, "high": 0.8}
# }
# # 取得基礎分數
# base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
# # 體型影響調整
# size_adjustments = {
# "Large": {"low": -0.2, "medium": -0.1, "high": 0},
# "Giant": {"low": -0.3, "medium": -0.15, "high": 0},
# }
# if breed_size in size_adjustments:
# adjustment = size_adjustments[breed_size].get(user_commitment, 0)
# base_score = max(0.2, base_score + adjustment)
# return base_score
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
"""
計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。
這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。
"""
# 重新設計基礎分數矩陣,讓美容需求的差異更加明顯
base_scores = {
"High": {
"low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數
"medium": 0.65, # 中等承諾仍有挑戰
"high": 1.0 # 高承諾最適合
},
"Moderate": {
"low": 0.45, # 中等需求對低承諾有困難
"medium": 0.85, # 較好的匹配
"high": 0.95 # 高承諾會有餘力
},
"Low": {
"low": 0.90, # 低需求對低承諾很合適
"medium": 0.85, # 略微降低以反映可能過度投入
"high": 0.80 # 可能造成資源浪費
}
}
# 取得基礎分數
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
# 根據品種大小調整美容工作量
size_adjustments = {
"Giant": {
"low": -0.35, # 大型犬的美容工作量顯著增加
"medium": -0.20,
"high": -0.10
},
"Large": {
"low": -0.25,
"medium": -0.15,
"high": -0.05
},
"Medium": {
"low": -0.15,
"medium": -0.10,
"high": 0
},
"Small": {
"low": -0.10,
"medium": -0.05,
"high": 0
}
}
# 應用體型調整
size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment]
current_score = base_score + size_adjustment
# 特殊毛髮類型的額外調整
def get_coat_adjustment(breed_description: str, commitment: str) -> float:
"""
評估特殊毛髮類型所需的額外維護工作
"""
adjustments = 0
# 長毛品種需要更多維護
if 'long coat' in breed_description.lower():
coat_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
adjustments += coat_penalties[commitment]
# 雙層毛的品種掉毛量更大
if 'double coat' in breed_description.lower():
double_coat_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += double_coat_penalties[commitment]
# 捲毛品種需要定期專業修剪
if 'curly' in breed_description.lower():
curly_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += curly_penalties[commitment]
return adjustments
# 季節性考量
def get_seasonal_adjustment(breed_description: str, commitment: str) -> float:
"""
評估季節性掉毛對美容需求的影響
"""
if 'seasonal shedding' in breed_description.lower():
seasonal_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
return seasonal_penalties[commitment]
return 0
# 專業美容需求評估
def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float:
"""
評估需要專業美容服務的影響
"""
if 'professional grooming' in breed_description.lower():
grooming_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
return grooming_penalties[commitment]
return 0
# 應用所有額外調整
# 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整
coat_adjustment = get_coat_adjustment("", user_commitment)
seasonal_adjustment = get_seasonal_adjustment("", user_commitment)
professional_adjustment = get_professional_grooming_adjustment("", user_commitment)
final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment
# 確保分數在有意義的範圍內,但允許更大的差異
return max(0.1, min(1.0, final_score))
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
# """
# 計算使用者經驗與品種需求的匹配分數
# 參數說明:
# care_level: 品種的照顧難度 ("High", "Moderate", "Low")
# user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced")
# temperament: 品種的性格特徵描述
# 返回:
# float: 0.2-1.0 之間的匹配分數
# """
# # 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
# base_scores = {
# "High": {
# "beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰
# "intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間
# "advanced": 1.0 # 資深者能完全勝任
# },
# "Moderate": {
# "beginner": 0.35, # 適中難度對新手來說仍具挑戰
# "intermediate": 0.82, # 中級玩家有很好的勝任能力
# "advanced": 1.0 # 資深者完全勝任
# },
# "Low": {
# "beginner": 0.72, # 低難度品種適合新手
# "intermediate": 0.92, # 中級玩家幾乎完全勝任
# "advanced": 1.0 # 資深者完全勝任
# }
# }
# # 取得基礎分數
# score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
# # 性格特徵評估 - 根據經驗等級調整權重
# temperament_lower = temperament.lower()
# temperament_adjustments = 0.0
# if user_experience == "beginner":
# # 新手不適合的特徵 - 更嚴格的懲罰
# difficult_traits = {
# 'stubborn': -0.15, # 加重固執的懲罰
# 'independent': -0.12, # 加重獨立性的懲罰
# 'dominant': -0.12, # 加重支配性的懲罰
# 'strong-willed': -0.10, # 加重強勢的懲罰
# 'protective': -0.08, # 加重保護性的懲罰
# 'aloof': -0.08, # 加重冷漠的懲罰
# 'energetic': -0.06 # 輕微懲罰高能量
# }
# # 新手友善的特徵 - 提供更多獎勵
# easy_traits = {
# 'gentle': 0.08, # 增加溫和的獎勵
# 'friendly': 0.08, # 增加友善的獎勵
# 'eager to please': 0.08, # 增加順從的獎勵
# 'patient': 0.06, # 獎勵耐心
# 'adaptable': 0.06, # 獎勵適應性
# 'calm': 0.05 # 獎勵冷靜
# }
# # 計算特徵調整
# for trait, penalty in difficult_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += penalty * 1.2 # 加重新手的懲罰
# for trait, bonus in easy_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += bonus
# # 品種特殊調整
# if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
# temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰
# elif user_experience == "intermediate":
# # 中級玩家的調整更加平衡
# moderate_traits = {
# 'intelligent': 0.05, # 獎勵聰明
# 'athletic': 0.04, # 獎勵運動能力
# 'versatile': 0.04, # 獎勵多功能性
# 'stubborn': -0.06, # 輕微懲罰固執
# 'independent': -0.05, # 輕微懲罰獨立性
# 'protective': -0.04 # 輕微懲罰保護性
# }
# for trait, adjustment in moderate_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += adjustment
# else: # advanced
# # 資深玩家能夠應對挑戰性特徵
# advanced_traits = {
# 'stubborn': 0.04, # 反轉為優勢
# 'independent': 0.04, # 反轉為優勢
# 'intelligent': 0.05, # 獎勵聰明
# 'protective': 0.04, # 獎勵保護性
# 'strong-willed': 0.03 # 獎勵強勢
# }
# for trait, bonus in advanced_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += bonus
# # 確保最終分數在合理範圍內
# final_score = max(0.2, min(1.0, score + temperament_adjustments))
# return final_score
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
"""
計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
重要改進:
1. 擴大基礎分數差異
2. 加重困難特徵的懲罰
3. 更細緻的品種特性評估
"""
# 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
base_scores = {
"High": {
"beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦
"intermediate": 0.60, # 中級玩家仍需謹慎
"advanced": 1.0 # 資深者能完全勝任
},
"Moderate": {
"beginner": 0.35, # 適中難度對新手仍具挑戰
"intermediate": 0.80, # 中級玩家較適合
"advanced": 1.0 # 資深者完全勝任
},
"Low": {
"beginner": 0.90, # 新手友善品種
"intermediate": 0.95, # 中級玩家幾乎完全勝任
"advanced": 1.0 # 資深者完全勝任
}
}
# 取得基礎分數
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
temperament_lower = temperament.lower()
temperament_adjustments = 0.0
# 根據經驗等級設定不同的特徵評估標準
if user_experience == "beginner":
# 新手不適合的特徵 - 更嚴格的懲罰
difficult_traits = {
'stubborn': -0.30, # 固執性格嚴重影響新手
'independent': -0.25, # 獨立性高的品種不適合新手
'dominant': -0.25, # 支配性強的品種需要經驗處理
'strong-willed': -0.20, # 強勢性格需要技巧管理
'protective': -0.20, # 保護性強需要適當訓練
'aloof': -0.15, # 冷漠性格需要耐心培養
'energetic': -0.15, # 活潑好動需要經驗引導
'aggressive': -0.35 # 攻擊傾向極不適合新手
}
# 新手友善的特徵 - 適度的獎勵
easy_traits = {
'gentle': 0.05, # 溫和性格適合新手
'friendly': 0.05, # 友善性格容易相處
'eager to please': 0.08, # 願意服從較容易訓練
'patient': 0.05, # 耐心的特質有助於建立關係
'adaptable': 0.05, # 適應性強較容易照顧
'calm': 0.06 # 冷靜的性格較好掌握
}
# 計算特徵調整
for trait, penalty in difficult_traits.items():
if trait in temperament_lower:
temperament_adjustments += penalty
for trait, bonus in easy_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 品種類型特殊評估
if 'terrier' in temperament_lower:
temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手
elif 'working' in temperament_lower:
temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人
elif 'guard' in temperament_lower:
temperament_adjustments -= 0.25 # 護衛犬需要專業訓練
elif user_experience == "intermediate":
# 中級玩家的特徵評估
moderate_traits = {
'stubborn': -0.15, # 仍然需要注意,但懲罰較輕
'independent': -0.10,
'intelligent': 0.08, # 聰明的特質可以好好發揮
'athletic': 0.06, # 運動能力可以適當訓練
'versatile': 0.07, # 多功能性可以開發
'protective': -0.08 # 保護性仍需注意
}
for trait, adjustment in moderate_traits.items():
if trait in temperament_lower:
temperament_adjustments += adjustment
else: # advanced
# 資深玩家能夠應對挑戰性特徵
advanced_traits = {
'stubborn': 0.05, # 困難特徵反而成為優勢
'independent': 0.05,
'intelligent': 0.10,
'protective': 0.05,
'strong-willed': 0.05
}
for trait, bonus in advanced_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 確保最終分數範圍更大,讓差異更明顯
final_score = max(0.05, min(1.0, score + temperament_adjustments))
return final_score
# def calculate_health_score(breed_name: str) -> float:
# """計算品種健康分數"""
# if breed_name not in breed_health_info:
# return 0.5
# health_notes = breed_health_info[breed_name]['health_notes'].lower()
# # 嚴重健康問題(降低0.15分)
# severe_conditions = [
# 'hip dysplasia',
# 'heart disease',
# 'progressive retinal atrophy',
# 'bloat',
# 'epilepsy',
# 'degenerative myelopathy',
# 'von willebrand disease'
# ]
# # 中度健康問題(降低0.1分)
# moderate_conditions = [
# 'allergies',
# 'eye problems',
# 'joint problems',
# 'hypothyroidism',
# 'ear infections',
# 'skin issues'
# ]
# # 輕微健康問題(降低0.05分)
# minor_conditions = [
# 'dental issues',
# 'weight gain tendency',
# 'minor allergies',
# 'seasonal allergies'
# ]
# # 計算基礎健康分數
# health_score = 1.0
# # 根據問題嚴重程度扣分
# severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
# moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
# minor_count = sum(1 for condition in minor_conditions if condition in health_notes)
# health_score -= (severe_count * 0.15)
# health_score -= (moderate_count * 0.1)
# health_score -= (minor_count * 0.05)
# # 壽命影響
# try:
# lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
# years = float(lifespan.split('-')[0])
# if years < 8:
# health_score *= 0.9
# elif years > 13:
# health_score *= 1.1
# except:
# pass
# # 特殊健康優勢
# if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
# health_score *= 1.1
# return max(0.2, min(1.0, health_score))
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
"""
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
重要改進:
1. 根據使用者的健康敏感度調整分數
2. 更嚴格的健康問題評估
3. 考慮多重健康問題的累積效應
4. 加入遺傳疾病的特別考量
"""
if breed_name not in breed_health_info:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題 - 加重扣分
severe_conditions = {
'hip dysplasia': -0.25, # 髖關節發育不良,影響生活品質
'heart disease': -0.25, # 心臟疾病,需要長期治療
'progressive retinal atrophy': -0.20, # 進行性視網膜萎縮,導致失明
'bloat': -0.22, # 胃扭轉,致命風險
'epilepsy': -0.20, # 癲癇,需要長期藥物控制
'degenerative myelopathy': -0.20, # 脊髓退化,影響行動能力
'von willebrand disease': -0.18 # 血液凝固障礙
}
# 中度健康問題 - 適度扣分
moderate_conditions = {
'allergies': -0.12, # 過敏問題,需要持續關注
'eye problems': -0.15, # 眼睛問題,可能需要手術
'joint problems': -0.15, # 關節問題,影響運動能力
'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療
'ear infections': -0.10, # 耳道感染,需要定期清理
'skin issues': -0.12 # 皮膚問題,需要特殊護理
}
# 輕微健康問題 - 輕微扣分
minor_conditions = {
'dental issues': -0.08, # 牙齒問題,需要定期護理
'weight gain tendency': -0.08, # 易胖體質,需要控制飲食
'minor allergies': -0.06, # 輕微過敏,可控制
'seasonal allergies': -0.06 # 季節性過敏
}
# 計算基礎健康分數
health_score = 1.0
# 健康問題累積效應計算
condition_counts = {
'severe': 0,
'moderate': 0,
'minor': 0
}
# 計算各等級健康問題的數量和影響
for condition, penalty in severe_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['severe'] += 1
for condition, penalty in moderate_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['moderate'] += 1
for condition, penalty in minor_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['minor'] += 1
# 多重問題的額外懲罰(累積效應)
if condition_counts['severe'] > 1:
health_score *= (0.85 ** (condition_counts['severe'] - 1))
if condition_counts['moderate'] > 2:
health_score *= (0.90 ** (condition_counts['moderate'] - 2))
# 根據使用者健康敏感度調整分數
sensitivity_multipliers = {
'low': 1.1, # 較不在意健康問題
'medium': 1.0, # 標準評估
'high': 0.85 # 非常注重健康問題
}
health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0)
# 壽命影響評估
try:
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
years = float(lifespan.split('-')[0])
if years < 8:
health_score *= 0.85 # 短壽命顯著降低分數
elif years < 10:
health_score *= 0.92 # 較短壽命輕微降低分數
elif years > 13:
health_score *= 1.1 # 長壽命適度加分
except:
pass
# 特殊健康優勢
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
health_score *= 1.15
elif 'robust health' in health_notes or 'few health issues' in health_notes:
health_score *= 1.1
# 確保分數在合理範圍內,但允許更大的分數差異
return max(0.1, min(1.0, health_score))
# def calculate_noise_score(breed_name: str, user_noise_tolerance: str) -> float:
# """計算品種噪音分數"""
# if breed_name not in breed_noise_info:
# return 0.5
# noise_info = breed_noise_info[breed_name]
# noise_level = noise_info['noise_level'].lower()
# noise_notes = noise_info['noise_notes'].lower()
# # 基礎噪音分數矩陣
# base_scores = {
# 'low': {'low': 1.0, 'medium': 0.9, 'high': 0.8},
# 'medium': {'low': 0.7, 'medium': 1.0, 'high': 0.9},
# 'high': {'low': 0.4, 'medium': 0.7, 'high': 1.0},
# 'varies': {'low': 0.6, 'medium': 0.8, 'high': 0.9}
# }
# # 獲取基礎分數
# base_score = base_scores.get(noise_level, {'low': 0.7, 'medium': 0.8, 'high': 0.6})[user_noise_tolerance]
# # 吠叫原因評估
# barking_reasons_penalty = 0
# problematic_triggers = [
# ('separation anxiety', -0.15),
# ('excessive barking', -0.12),
# ('territorial', -0.08),
# ('alert barking', -0.05),
# ('attention seeking', -0.05)
# ]
# for trigger, penalty in problematic_triggers:
# if trigger in noise_notes:
# barking_reasons_penalty += penalty
# # 可訓練性補償
# trainability_bonus = 0
# if 'responds well to training' in noise_notes:
# trainability_bonus = 0.1
# elif 'can be trained' in noise_notes:
# trainability_bonus = 0.05
# # 特殊情況
# special_adjustments = 0
# if 'rarely barks' in noise_notes:
# special_adjustments += 0.1
# if 'howls' in noise_notes and user_noise_tolerance == 'low':
# special_adjustments -= 0.1
# final_score = base_score + barking_reasons_penalty + trainability_bonus + special_adjustments
# return max(0.2, min(1.0, final_score))
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
"""
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
"""
if breed_name not in breed_noise_info:
return 0.5
noise_info = breed_noise_info[breed_name]
noise_level = noise_info['noise_level'].lower()
noise_notes = noise_info['noise_notes'].lower()
# 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
base_scores = {
'low': {
'low': 1.0, # 安靜的狗對低容忍完美匹配
'medium': 0.95, # 安靜的狗對一般容忍很好
'high': 0.90 # 安靜的狗對高容忍當然可以
},
'medium': {
'low': 0.60, # 一般吠叫對低容忍較困難
'medium': 0.90, # 一般吠叫對一般容忍可接受
'high': 0.95 # 一般吠叫對高容忍很好
},
'high': {
'low': 0.25, # 愛叫的狗對低容忍極不適合
'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
'high': 0.90 # 愛叫的狗對高容忍可以接受
},
'varies': {
'low': 0.50, # 不確定的情況對低容忍風險較大
'medium': 0.75, # 不確定的情況對一般容忍可嘗試
'high': 0.85 # 不確定的情況對高容忍問題較小
}
}
# 取得基礎分數
base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
# 吠叫原因評估,根據環境調整懲罰程度
barking_penalties = {
'separation anxiety': {
'apartment': -0.30, # 在公寓對鄰居影響更大
'house_small': -0.25,
'house_large': -0.20
},
'excessive barking': {
'apartment': -0.25,
'house_small': -0.20,
'house_large': -0.15
},
'territorial': {
'apartment': -0.20, # 在公寓更容易被觸發
'house_small': -0.15,
'house_large': -0.10
},
'alert barking': {
'apartment': -0.15, # 公寓環境刺激較多
'house_small': -0.10,
'house_large': -0.08
},
'attention seeking': {
'apartment': -0.15,
'house_small': -0.12,
'house_large': -0.10
}
}
# 計算環境相關的吠叫懲罰
living_space = user_prefs.living_space
barking_penalty = 0
for trigger, penalties in barking_penalties.items():
if trigger in noise_notes:
barking_penalty += penalties.get(living_space, -0.15)
# 特殊情況評估
special_adjustments = 0
if user_prefs.has_children:
# 孩童年齡相關調整
child_age_adjustments = {
'toddler': {
'high': -0.20, # 幼童對吵鬧更敏感
'medium': -0.15,
'low': -0.05
},
'school_age': {
'high': -0.15,
'medium': -0.10,
'low': -0.05
},
'teenager': {
'high': -0.10,
'medium': -0.05,
'low': -0.02
}
}
# 根據孩童年齡和噪音等級調整
age_adj = child_age_adjustments.get(user_prefs.children_age,
child_age_adjustments['school_age'])
special_adjustments += age_adj.get(noise_level, -0.10)
# 訓練性補償評估
trainability_bonus = 0
if 'responds well to training' in noise_notes:
trainability_bonus = 0.12
elif 'can be trained' in noise_notes:
trainability_bonus = 0.08
elif 'difficult to train' in noise_notes:
trainability_bonus = 0.02
# 夜間吠叫特別考量
if 'night barking' in noise_notes or 'howls' in noise_notes:
if user_prefs.living_space == 'apartment':
special_adjustments -= 0.15
elif user_prefs.living_space == 'house_small':
special_adjustments -= 0.10
else:
special_adjustments -= 0.05
# 計算最終分數,確保更大的分數範圍
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
return max(0.1, min(1.0, final_score))
# # 計算所有基礎分數
# scores = {
# 'space': calculate_space_score(
# breed_info['Size'],
# user_prefs.living_space,
# user_prefs.space_for_play,
# breed_info.get('Exercise Needs', 'Moderate')
# ),
# 'exercise': calculate_exercise_score(
# breed_info.get('Exercise Needs', 'Moderate'),
# user_prefs.exercise_time
# ),
# 'grooming': calculate_grooming_score(
# breed_info.get('Grooming Needs', 'Moderate'),
# user_prefs.grooming_commitment.lower(),
# breed_info['Size']
# ),
# 'experience': calculate_experience_score(
# breed_info.get('Care Level', 'Moderate'),
# user_prefs.experience_level,
# breed_info.get('Temperament', '')
# ),
# 'health': calculate_health_score(breed_info.get('Breed', '')),
# 'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
# }
# # 優化權重配置
# weights = {
# 'space': 0.28,
# 'exercise': 0.18,
# 'grooming': 0.12,
# 'experience': 0.22,
# 'health': 0.12,
# 'noise': 0.08
# }
# # 計算加權總分
# weighted_score = sum(score * weights[category] for category, score in scores.items())
# def amplify_score(score):
# """
# 優化分數放大函數,確保分數範圍合理且結果一致
# """
# # 基礎調整
# adjusted = (score - 0.35) * 1.8
# # 使用 3.2 次方使曲線更平滑
# amplified = pow(adjusted, 3.2) / 5.8 + score
# # 特別處理高分區間,確保不超過95%
# if amplified > 0.90:
# # 壓縮高分區間,確保最高到95%
# amplified = 0.90 + (amplified - 0.90) * 0.5
# # 確保最終分數在合理範圍內(0.55-0.95)
# final_score = max(0.55, min(0.95, amplified))
# # 四捨五入到小數點後第三位
# return round(final_score, 3)
# final_score = amplify_score(weighted_score)
# # 四捨五入所有分數
# scores = {k: round(v, 4) for k, v in scores.items()}
# scores['overall'] = round(final_score, 4)
# return scores
# except Exception as e:
# print(f"Error details: {str(e)}")
# print(f"breed_info: {breed_info}")
# # print(f"Error in calculate_compatibility_score: {str(e)}")
# return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
#
print("\n=== 開始計算品種相容性分數 ===")
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
print(f"品種信息: {breed_info}")
print(f"使用者偏好: {vars(user_prefs)}")
# 1. 計算基礎分數
try:
space_score = calculate_space_score(
breed_info['Size'],
user_prefs.living_space,
user_prefs.space_for_play,
breed_info.get('Exercise Needs', 'Moderate')
)
print(f"空間分數計算結果: {space_score}")
except Exception as e:
print(f"空間分數計算錯誤: {str(e)}")
raise
try:
exercise_score = calculate_exercise_score(
breed_info.get('Exercise Needs', 'Moderate'),
user_prefs.exercise_time
)
print(f"運動分數計算結果: {exercise_score}")
except Exception as e:
print(f"運動分數計算錯誤: {str(e)}")
raise
try:
grooming_score = calculate_grooming_score(
breed_info.get('Grooming Needs', 'Moderate'),
user_prefs.grooming_commitment.lower(),
breed_info['Size']
)
print(f"美容分數計算結果: {grooming_score}")
except Exception as e:
print(f"美容分數計算錯誤: {str(e)}")
raise
try:
experience_score = calculate_experience_score(
breed_info.get('Care Level', 'Moderate'),
user_prefs.experience_level,
breed_info.get('Temperament', '')
)
print(f"經驗分數計算結果: {experience_score}")
except Exception as e:
print(f"經驗分數計算錯誤: {str(e)}")
raise
try:
# 修正:加入 user_prefs 參數
health_score = calculate_health_score(breed_info.get('Breed', ''), user_prefs)
print(f"健康分數計算結果: {health_score}")
except Exception as e:
print(f"健康分數計算錯誤: {str(e)}")
raise
try:
noise_score = calculate_noise_score(
breed_info.get('Breed', ''),
user_prefs.noise_tolerance
)
print(f"噪音分數計算結果: {noise_score}")
except Exception as e:
print(f"噪音分數計算錯誤: {str(e)}")
raise
# 整合所有分數到字典中
scores = {
'space': space_score,
'exercise': exercise_score,
'grooming': grooming_score,
'experience': experience_score,
'health': health_score,
'noise': noise_score
}
print("\n=== 所有基礎分數 ===")
for category, score in scores.items():
print(f"{category}: {score}")
# 首先處理極端情況
def check_critical_issues(scores: dict, breed_info: dict) -> float:
"""
檢查關鍵問題並計算懲罰係數
"""
penalty = 1.0
# 檢查經驗分數 - 如果太低表示品種太難駕馭
if scores['experience'] < 0.3:
penalty *= 0.8
# 檢查空間分數 - 特別是對公寓的情況
if user_prefs.living_space == 'apartment' and scores['space'] < 0.4:
penalty *= 0.85
# 檢查健康分數 - 健康問題是重要考量
if scores['health'] < 0.4:
penalty *= 0.9
return penalty
# 計算權重和加權分數
def calculate_weighted_score(scores: dict) -> float:
"""
使用動態權重計算加權分數
"""
base_weights = {
'space': 0.28,
'exercise': 0.18,
'grooming': 0.12,
'experience': 0.22,
'health': 0.12,
'noise': 0.08
}
# 根據居住環境調整權重
if user_prefs.living_space == 'apartment':
base_weights['space'] *= 1.2
base_weights['noise'] *= 1.2
# 根據經驗等級調整權重
if user_prefs.experience_level == 'beginner':
base_weights['experience'] *= 1.3
# 重新正規化權重
total_weight = sum(base_weights.values())
weights = {k: v/total_weight for k, v in base_weights.items()}
# 計算加權分數
return sum(score * weights[category] for category, score in scores.items())
# 計算最終分數
def calculate_final_score(base_score: float, penalty: float) -> float:
"""
計算並調整最終分數,確保合理的分數分布
"""
# 應用懲罰係數
adjusted_score = base_score * penalty
# 將分數映射到期望的範圍(0.55-0.95)
mapped_score = 0.55 + (adjusted_score * 0.4)
# 確保分數在合理範圍內
final = max(0.55, min(0.95, mapped_score))
return round(final, 4)
# 執行計算流程
penalty = check_critical_issues(scores, breed_info)
weighted_score = calculate_weighted_score(scores)
final_score = calculate_final_score(weighted_score, penalty)
# 準備返回結果
scores = {k: round(v, 4) for k, v in scores.items()}
scores['overall'] = final_score
return scores
except Exception as e:
print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
print(f"錯誤類型: {type(e).__name__}")
print(f"錯誤訊息: {str(e)}")
print(f"完整錯誤追蹤:")
print(traceback.format_exc())
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}