DawnC commited on
Commit
08673dd
ยท
1 Parent(s): bc16cb9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -79
app.py CHANGED
@@ -288,76 +288,9 @@ async def process_single_dog(image):
288
  return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
289
 
290
 
291
- # async def predict(image):
292
- # if image is None:
293
- # return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
294
-
295
- # try:
296
- # if isinstance(image, np.ndarray):
297
- # image = Image.fromarray(image)
298
-
299
- # dogs = await detect_multiple_dogs(image)
300
-
301
- # color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
302
- # explanations = []
303
- # buttons = []
304
- # annotated_image = image.copy()
305
- # draw = ImageDraw.Draw(annotated_image)
306
- # font = ImageFont.load_default()
307
-
308
- # for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
309
- # top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
310
- # color = color_list[i % len(color_list)]
311
- # draw.rectangle(box, outline=color, width=3)
312
- # draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
313
-
314
- # combined_confidence = detection_confidence * top1_prob
315
-
316
- # if top1_prob >= 0.5:
317
- # breed = topk_breeds[0]
318
- # description = get_dog_description(breed)
319
- # formatted_description = format_description(description, breed)
320
- # explanations.append(f"Dog {i+1}: {formatted_description}")
321
- # elif combined_confidence >= 0.2:
322
- # dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
323
- # dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
324
- # explanations.append(dog_explanation)
325
- # buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
326
- # else:
327
- # explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
328
-
329
- # final_explanation = "\n\n".join(explanations)
330
- # if buttons:
331
- # final_explanation += "\n\nClick on a button to view more information about the breed."
332
- # initial_state = {
333
- # "explanation": final_explanation,
334
- # "buttons": buttons,
335
- # "show_back": True,
336
- # "image": annotated_image,
337
- # "is_multi_dog": len(dogs) > 1,
338
- # "dogs_info": explanations
339
- # }
340
- # return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
341
- # else:
342
- # initial_state = {
343
- # "explanation": final_explanation,
344
- # "buttons": [],
345
- # "show_back": False,
346
- # "image": annotated_image,
347
- # "is_multi_dog": len(dogs) > 1,
348
- # "dogs_info": explanations
349
- # }
350
- # return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
351
-
352
- # except Exception as e:
353
- # error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
354
- # print(error_msg)
355
- # return error_msg, None, gr.update(visible=False, choices=[]), None
356
-
357
-
358
  async def predict(image):
359
  if image is None:
360
- return "Please upload an image to start.", None, gr.update(visible=False), None
361
 
362
  try:
363
  if isinstance(image, np.ndarray):
@@ -365,30 +298,61 @@ async def predict(image):
365
 
366
  dogs = await detect_multiple_dogs(image)
367
 
 
368
  explanations = []
 
369
  annotated_image = image.copy()
370
  draw = ImageDraw.Draw(annotated_image)
371
-
372
- # ้‡ๅฐๆฏ้šป็‹—้€ฒ่กŒ่พจ่ญ˜
373
  for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
374
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
375
- draw.rectangle(box, outline="#FF0000", width=3) # ๆจ™่จ˜ๆก†้ธ
 
 
 
376
  combined_confidence = detection_confidence * top1_prob
377
 
378
- if combined_confidence >= 0.5:
379
  breed = topk_breeds[0]
380
  description = get_dog_description(breed)
381
- explanations.append(f"Dog {i+1}: {description}")
 
 
 
 
 
 
382
  else:
383
- explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
384
-
385
- # ่ฟ”ๅ›žๆœ€็ต‚่งฃ้‡‹่ˆ‡ๅœ–็‰‡
386
- return "\n".join(explanations), annotated_image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387
 
388
  except Exception as e:
389
- error_msg = f"Error: {str(e)}"
390
  print(error_msg)
391
- return error_msg, None
392
 
393
 
394
  def show_details(choice, previous_output, initial_state):
 
288
  return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
289
 
290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291
  async def predict(image):
292
  if image is None:
293
+ return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
294
 
295
  try:
296
  if isinstance(image, np.ndarray):
 
298
 
299
  dogs = await detect_multiple_dogs(image)
300
 
301
+ color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
302
  explanations = []
303
+ buttons = []
304
  annotated_image = image.copy()
305
  draw = ImageDraw.Draw(annotated_image)
306
+ font = ImageFont.load_default()
307
+
308
  for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
309
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
310
+ color = color_list[i % len(color_list)]
311
+ draw.rectangle(box, outline=color, width=3)
312
+ draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
313
+
314
  combined_confidence = detection_confidence * top1_prob
315
 
316
+ if top1_prob >= 0.5:
317
  breed = topk_breeds[0]
318
  description = get_dog_description(breed)
319
+ formatted_description = format_description(description, breed)
320
+ explanations.append(f"Dog {i+1}: {formatted_description}")
321
+ elif combined_confidence >= 0.2:
322
+ dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
323
+ dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
324
+ explanations.append(dog_explanation)
325
+ buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
326
  else:
327
+ explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
328
+
329
+ final_explanation = "\n\n".join(explanations)
330
+ if buttons:
331
+ final_explanation += "\n\nClick on a button to view more information about the breed."
332
+ initial_state = {
333
+ "explanation": final_explanation,
334
+ "buttons": buttons,
335
+ "show_back": True,
336
+ "image": annotated_image,
337
+ "is_multi_dog": len(dogs) > 1,
338
+ "dogs_info": explanations
339
+ }
340
+ return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
341
+ else:
342
+ initial_state = {
343
+ "explanation": final_explanation,
344
+ "buttons": [],
345
+ "show_back": False,
346
+ "image": annotated_image,
347
+ "is_multi_dog": len(dogs) > 1,
348
+ "dogs_info": explanations
349
+ }
350
+ return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
351
 
352
  except Exception as e:
353
+ error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
354
  print(error_msg)
355
+ return error_msg, None, gr.update(visible=False, choices=[]), None
356
 
357
 
358
  def show_details(choice, previous_output, initial_state):