DawnC commited on
Commit
0b37af8
·
1 Parent(s): 202a9e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -21
app.py CHANGED
@@ -251,9 +251,10 @@ def get_akc_breeds_link():
251
 
252
 
253
 
 
254
  def format_description(description, breed):
255
  if isinstance(description, dict):
256
- # 確保每一個描述項目換行顯示
257
  formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
258
  else:
259
  formatted_description = description
@@ -270,12 +271,9 @@ Please refer to the AKC's terms of use and privacy policy.*
270
  """
271
  return formatted_description
272
 
273
-
274
-
275
  async def predict_single_dog(image):
276
  return await asyncio.to_thread(_predict_single_dog, image)
277
 
278
-
279
  def _predict_single_dog(image):
280
  image_tensor = preprocess_image(image)
281
  with torch.no_grad():
@@ -288,13 +286,11 @@ def _predict_single_dog(image):
288
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
289
  return top1_prob, topk_breeds, topk_probs_percent
290
 
291
-
292
- async def detect_multiple_dogs(image):
293
- return await asyncio.to_thread(_detect_multiple_dogs, image)
294
-
295
-
296
- def _detect_multiple_dogs(image, conf_threshold=0.3):
297
  # 調整 YOLO 模型的置信度閾值
 
 
 
298
  results = model_yolo(image, conf=conf_threshold)
299
  dogs = []
300
  for result in results:
@@ -307,8 +303,6 @@ def _detect_multiple_dogs(image, conf_threshold=0.3):
307
  dogs.append((cropped_image, confidence, xyxy))
308
  return dogs
309
 
310
-
311
-
312
  async def predict(image):
313
  if image is None:
314
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
@@ -320,7 +314,6 @@ async def predict(image):
320
  # 偵測圖片中的多個狗
321
  dogs = await detect_multiple_dogs(image)
322
 
323
- # 單一狗的情況
324
  if len(dogs) == 0:
325
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
326
  if top1_prob < 0.2:
@@ -330,7 +323,7 @@ async def predict(image):
330
  formatted_description = format_description(description, breed)
331
  return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
332
 
333
- # 單隻狗時,直接返回結果
334
  if len(dogs) == 1:
335
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
336
  breed = topk_breeds[0]
@@ -338,7 +331,7 @@ async def predict(image):
338
  formatted_description = format_description(description, breed)
339
  return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
340
 
341
- # 處理多隻狗的情況
342
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
343
  explanations = []
344
  visible_buttons = []
@@ -346,16 +339,16 @@ async def predict(image):
346
  draw = ImageDraw.Draw(annotated_image)
347
  font = ImageFont.load_default()
348
 
349
- # 遍歷每一隻狗並返回結果
350
  for i, (cropped_image, _, box) in enumerate(dogs):
351
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
352
 
353
- # 畫框及標籤顏色
354
- color = color_list[i % len(color_list)]
355
  draw.rectangle(box, outline=color, width=3)
356
  draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
357
 
358
- # 高置信度情況
359
  if top1_prob >= 0.5:
360
  breed = topk_breeds[0]
361
  description = get_dog_description(breed)
@@ -379,8 +372,6 @@ Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds
379
  except Exception as e:
380
  return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
381
 
382
-
383
-
384
  async def show_details(choice):
385
  if not choice:
386
  return "Please select a breed to view details."
@@ -397,6 +388,7 @@ async def show_details(choice):
397
 
398
 
399
 
 
400
  with gr.Blocks(css="""
401
  .container { max-width: 900px; margin: auto; padding: 20px; }
402
  .gr-box { border-radius: 15px; }
 
251
 
252
 
253
 
254
+ # Update the format_description to handle descriptions more cleanly
255
  def format_description(description, breed):
256
  if isinstance(description, dict):
257
+ # 確保每一個描述項目換行顯示,並避免重複顯示 Breed
258
  formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
259
  else:
260
  formatted_description = description
 
271
  """
272
  return formatted_description
273
 
 
 
274
  async def predict_single_dog(image):
275
  return await asyncio.to_thread(_predict_single_dog, image)
276
 
 
277
  def _predict_single_dog(image):
278
  image_tensor = preprocess_image(image)
279
  with torch.no_grad():
 
286
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
287
  return top1_prob, topk_breeds, topk_probs_percent
288
 
289
+ async def detect_multiple_dogs(image, conf_threshold=0.3):
 
 
 
 
 
290
  # 調整 YOLO 模型的置信度閾值
291
+ return await asyncio.to_thread(_detect_multiple_dogs, image, conf_threshold)
292
+
293
+ def _detect_multiple_dogs(image, conf_threshold):
294
  results = model_yolo(image, conf=conf_threshold)
295
  dogs = []
296
  for result in results:
 
303
  dogs.append((cropped_image, confidence, xyxy))
304
  return dogs
305
 
 
 
306
  async def predict(image):
307
  if image is None:
308
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
 
314
  # 偵測圖片中的多個狗
315
  dogs = await detect_multiple_dogs(image)
316
 
 
317
  if len(dogs) == 0:
318
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
319
  if top1_prob < 0.2:
 
323
  formatted_description = format_description(description, breed)
324
  return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
325
 
326
+ # 處理單一狗情況
327
  if len(dogs) == 1:
328
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
329
  breed = topk_breeds[0]
 
331
  formatted_description = format_description(description, breed)
332
  return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
333
 
334
+ # 多狗處理
335
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
336
  explanations = []
337
  visible_buttons = []
 
339
  draw = ImageDraw.Draw(annotated_image)
340
  font = ImageFont.load_default()
341
 
342
+ # 遍歷每一隻狗
343
  for i, (cropped_image, _, box) in enumerate(dogs):
344
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
345
 
346
+ # 繪製方框
347
+ color = color_list[i % len(color_list)]
348
  draw.rectangle(box, outline=color, width=3)
349
  draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
350
 
351
+ # 高置信度返回
352
  if top1_prob >= 0.5:
353
  breed = topk_breeds[0]
354
  description = get_dog_description(breed)
 
372
  except Exception as e:
373
  return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
374
 
 
 
375
  async def show_details(choice):
376
  if not choice:
377
  return "Please select a breed to view details."
 
388
 
389
 
390
 
391
+
392
  with gr.Blocks(css="""
393
  .container { max-width: 900px; margin: auto; padding: 20px; }
394
  .gr-box { border-radius: 15px; }