Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -143,40 +143,6 @@ def preprocess_image(image):
|
|
143 |
def get_akc_breeds_link():
|
144 |
return "https://www.akc.org/dog-breeds/"
|
145 |
|
146 |
-
# def predict(image):
|
147 |
-
# try:
|
148 |
-
# image_tensor = preprocess_image(image)
|
149 |
-
# with torch.no_grad():
|
150 |
-
# output = model(image_tensor)
|
151 |
-
# if isinstance(output, tuple):
|
152 |
-
# logits = output[0]
|
153 |
-
# else:
|
154 |
-
# logits = output
|
155 |
-
# _, predicted = torch.max(logits, 1) # predicted is the max value's index on dim=1
|
156 |
-
# breed = dog_breeds[predicted.item()]
|
157 |
-
|
158 |
-
# description = get_dog_description(breed)
|
159 |
-
# akc_link = get_akc_breeds_link()
|
160 |
-
|
161 |
-
# if isinstance(description, dict):
|
162 |
-
# description_str = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
163 |
-
# else:
|
164 |
-
# description_str = description
|
165 |
-
|
166 |
-
# # Add AKC link as an option
|
167 |
-
# description_str += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
|
168 |
-
|
169 |
-
# # Add disclaimer
|
170 |
-
# disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
|
171 |
-
# "You may need to search for the specific breed on that page. "
|
172 |
-
# "I am not responsible for the content on external sites. "
|
173 |
-
# "Please refer to the AKC's terms of use and privacy policy.*")
|
174 |
-
# description_str += disclaimer
|
175 |
-
|
176 |
-
# return description_str
|
177 |
-
# except Exception as e:
|
178 |
-
# return f"An error occurred: {e}"
|
179 |
-
|
180 |
def predict(image):
|
181 |
try:
|
182 |
image_tensor = preprocess_image(image)
|
|
|
143 |
def get_akc_breeds_link():
|
144 |
return "https://www.akc.org/dog-breeds/"
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
def predict(image):
|
147 |
try:
|
148 |
image_tensor = preprocess_image(image)
|