Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +298 -400
scoring_calculation_system.py
CHANGED
@@ -372,69 +372,117 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
372 |
print("Missing Size information")
|
373 |
raise KeyError("Size information missing")
|
374 |
|
|
|
375 |
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
376 |
-
#
|
377 |
-
# # 基礎空間需求矩陣
|
378 |
# base_scores = {
|
379 |
-
# "Small": {
|
380 |
-
#
|
381 |
-
#
|
382 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
# }
|
384 |
|
385 |
# # 取得基礎分數
|
386 |
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
387 |
|
388 |
-
# #
|
389 |
# exercise_adjustments = {
|
390 |
-
# "Very High":
|
391 |
-
#
|
392 |
-
#
|
393 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
# }
|
395 |
|
396 |
-
#
|
|
|
|
|
397 |
|
398 |
-
# #
|
399 |
-
#
|
400 |
-
#
|
401 |
-
#
|
402 |
-
#
|
403 |
-
|
404 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
base_scores = {
|
409 |
"Small": {
|
410 |
-
"apartment":
|
411 |
-
"house_small": 0.
|
412 |
-
"house_large": 0.
|
413 |
},
|
414 |
"Medium": {
|
415 |
-
"apartment": 0.45,
|
416 |
-
"house_small": 0.
|
417 |
-
"house_large":
|
418 |
},
|
419 |
"Large": {
|
420 |
-
"apartment": 0.15,
|
421 |
-
"house_small": 0.
|
422 |
-
"house_large":
|
423 |
},
|
424 |
"Giant": {
|
425 |
-
"apartment": 0.
|
426 |
-
"house_small": 0.45,
|
427 |
-
"house_large":
|
428 |
}
|
429 |
}
|
430 |
|
431 |
# 取得基礎分數
|
432 |
base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
433 |
|
434 |
-
#
|
435 |
exercise_adjustments = {
|
436 |
"Very High": {
|
437 |
-
"apartment": -0.25, #
|
438 |
"house_small": -0.15,
|
439 |
"house_large": -0.05
|
440 |
},
|
@@ -449,74 +497,133 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
449 |
"house_large": 0
|
450 |
},
|
451 |
"Low": {
|
452 |
-
"apartment": 0.05,
|
453 |
"house_small": 0,
|
454 |
-
"house_large": 0
|
455 |
}
|
456 |
}
|
457 |
|
458 |
-
#
|
459 |
adjustment = exercise_adjustments.get(exercise_needs,
|
460 |
exercise_adjustments["Moderate"])[living_space]
|
461 |
|
462 |
-
#
|
463 |
-
yard_bonus = 0
|
464 |
if has_yard:
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
|
472 |
-
|
473 |
-
|
|
|
|
|
|
|
|
|
|
|
474 |
|
475 |
-
def calculate_exercise_score(breed_needs: str, user_time: int) -> float:
|
476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
exercise_needs = {
|
478 |
-
'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180},
|
479 |
-
'HIGH': {'min': 90, 'ideal': 120, 'max': 150},
|
480 |
-
'MODERATE': {'min': 45, 'ideal': 60, 'max': 90},
|
481 |
-
'LOW': {'min': 20, 'ideal': 30, 'max': 45},
|
482 |
-
'VARIES': {'min': 30, 'ideal': 60, 'max': 90}
|
483 |
}
|
484 |
|
485 |
breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE'])
|
486 |
|
487 |
-
#
|
488 |
-
if
|
489 |
-
if
|
490 |
-
|
491 |
-
|
492 |
-
elif user_time >= breed_need['min']:
|
493 |
-
return 0.8 + (user_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.2
|
494 |
else:
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
|
506 |
-
|
507 |
-
# base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
|
|
514 |
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
|
522 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
@@ -648,113 +755,6 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
648 |
|
649 |
# 確保分數在有意義的範圍內,但允許更大的差異
|
650 |
return max(0.1, min(1.0, final_score))
|
651 |
-
|
652 |
-
|
653 |
-
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
654 |
-
# """
|
655 |
-
# 計算使用者經驗與品種需求的匹配分數
|
656 |
-
|
657 |
-
# 參數說明:
|
658 |
-
# care_level: 品種的照顧難度 ("High", "Moderate", "Low")
|
659 |
-
# user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced")
|
660 |
-
# temperament: 品種的性格特徵描述
|
661 |
-
|
662 |
-
# 返回:
|
663 |
-
# float: 0.2-1.0 之間的匹配分數
|
664 |
-
# """
|
665 |
-
# # 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
|
666 |
-
# base_scores = {
|
667 |
-
# "High": {
|
668 |
-
# "beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰
|
669 |
-
# "intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間
|
670 |
-
# "advanced": 1.0 # 資深者能完全勝任
|
671 |
-
# },
|
672 |
-
# "Moderate": {
|
673 |
-
# "beginner": 0.35, # 適中難度對新手來說仍具挑戰
|
674 |
-
# "intermediate": 0.82, # 中級玩家有很好的勝任能力
|
675 |
-
# "advanced": 1.0 # 資深者完全勝任
|
676 |
-
# },
|
677 |
-
# "Low": {
|
678 |
-
# "beginner": 0.72, # 低難度品種適合新手
|
679 |
-
# "intermediate": 0.92, # 中級玩家幾乎完全勝任
|
680 |
-
# "advanced": 1.0 # 資深者完全勝任
|
681 |
-
# }
|
682 |
-
# }
|
683 |
-
|
684 |
-
# # 取得基礎分數
|
685 |
-
# score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
|
686 |
-
|
687 |
-
# # 性格特徵評估 - 根據經驗等級調整權重
|
688 |
-
# temperament_lower = temperament.lower()
|
689 |
-
# temperament_adjustments = 0.0
|
690 |
-
|
691 |
-
# if user_experience == "beginner":
|
692 |
-
# # 新手不適合的特徵 - 更嚴格的懲罰
|
693 |
-
# difficult_traits = {
|
694 |
-
# 'stubborn': -0.15, # 加重固執的懲罰
|
695 |
-
# 'independent': -0.12, # 加重獨立性的懲罰
|
696 |
-
# 'dominant': -0.12, # 加重支配性的懲罰
|
697 |
-
# 'strong-willed': -0.10, # 加重強勢的懲罰
|
698 |
-
# 'protective': -0.08, # 加重保護性的懲罰
|
699 |
-
# 'aloof': -0.08, # 加重冷漠的懲罰
|
700 |
-
# 'energetic': -0.06 # 輕微懲罰高能量
|
701 |
-
# }
|
702 |
-
|
703 |
-
# # 新手友善的特徵 - 提供更多獎勵
|
704 |
-
# easy_traits = {
|
705 |
-
# 'gentle': 0.08, # 增加溫和的獎勵
|
706 |
-
# 'friendly': 0.08, # 增加友善的獎勵
|
707 |
-
# 'eager to please': 0.08, # 增加順從的獎勵
|
708 |
-
# 'patient': 0.06, # 獎勵耐心
|
709 |
-
# 'adaptable': 0.06, # 獎勵適應性
|
710 |
-
# 'calm': 0.05 # 獎勵冷靜
|
711 |
-
# }
|
712 |
-
|
713 |
-
# # 計算特徵調整
|
714 |
-
# for trait, penalty in difficult_traits.items():
|
715 |
-
# if trait in temperament_lower:
|
716 |
-
# temperament_adjustments += penalty * 1.2 # 加重新手的懲罰
|
717 |
-
|
718 |
-
# for trait, bonus in easy_traits.items():
|
719 |
-
# if trait in temperament_lower:
|
720 |
-
# temperament_adjustments += bonus
|
721 |
-
|
722 |
-
# # 品種特殊調整
|
723 |
-
# if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
|
724 |
-
# temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰
|
725 |
-
|
726 |
-
# elif user_experience == "intermediate":
|
727 |
-
# # 中級玩家的調整更加平衡
|
728 |
-
# moderate_traits = {
|
729 |
-
# 'intelligent': 0.05, # 獎勵聰明
|
730 |
-
# 'athletic': 0.04, # 獎勵運動能力
|
731 |
-
# 'versatile': 0.04, # 獎勵多功能性
|
732 |
-
# 'stubborn': -0.06, # 輕微懲罰固執
|
733 |
-
# 'independent': -0.05, # 輕微懲罰獨立性
|
734 |
-
# 'protective': -0.04 # 輕微懲罰保護性
|
735 |
-
# }
|
736 |
-
|
737 |
-
# for trait, adjustment in moderate_traits.items():
|
738 |
-
# if trait in temperament_lower:
|
739 |
-
# temperament_adjustments += adjustment
|
740 |
-
|
741 |
-
# else: # advanced
|
742 |
-
# # 資深玩家能夠應對挑戰性特徵
|
743 |
-
# advanced_traits = {
|
744 |
-
# 'stubborn': 0.04, # 反轉為優勢
|
745 |
-
# 'independent': 0.04, # 反轉為優勢
|
746 |
-
# 'intelligent': 0.05, # 獎勵聰明
|
747 |
-
# 'protective': 0.04, # 獎勵保護性
|
748 |
-
# 'strong-willed': 0.03 # 獎勵強勢
|
749 |
-
# }
|
750 |
-
|
751 |
-
# for trait, bonus in advanced_traits.items():
|
752 |
-
# if trait in temperament_lower:
|
753 |
-
# temperament_adjustments += bonus
|
754 |
-
|
755 |
-
# # 確保最終分數在合理範圍內
|
756 |
-
# final_score = max(0.2, min(1.0, score + temperament_adjustments))
|
757 |
-
# return final_score
|
758 |
|
759 |
|
760 |
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
@@ -866,72 +866,6 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
866 |
|
867 |
return final_score
|
868 |
|
869 |
-
|
870 |
-
# def calculate_health_score(breed_name: str) -> float:
|
871 |
-
# """計算品種健康分數"""
|
872 |
-
# if breed_name not in breed_health_info:
|
873 |
-
# return 0.5
|
874 |
-
|
875 |
-
# health_notes = breed_health_info[breed_name]['health_notes'].lower()
|
876 |
-
|
877 |
-
# # 嚴重健康問題(降低0.15分)
|
878 |
-
# severe_conditions = [
|
879 |
-
# 'hip dysplasia',
|
880 |
-
# 'heart disease',
|
881 |
-
# 'progressive retinal atrophy',
|
882 |
-
# 'bloat',
|
883 |
-
# 'epilepsy',
|
884 |
-
# 'degenerative myelopathy',
|
885 |
-
# 'von willebrand disease'
|
886 |
-
# ]
|
887 |
-
|
888 |
-
# # 中度健康問題(降低0.1分)
|
889 |
-
# moderate_conditions = [
|
890 |
-
# 'allergies',
|
891 |
-
# 'eye problems',
|
892 |
-
# 'joint problems',
|
893 |
-
# 'hypothyroidism',
|
894 |
-
# 'ear infections',
|
895 |
-
# 'skin issues'
|
896 |
-
# ]
|
897 |
-
|
898 |
-
# # 輕微健康問題(降低0.05分)
|
899 |
-
# minor_conditions = [
|
900 |
-
# 'dental issues',
|
901 |
-
# 'weight gain tendency',
|
902 |
-
# 'minor allergies',
|
903 |
-
# 'seasonal allergies'
|
904 |
-
# ]
|
905 |
-
|
906 |
-
# # 計算基礎健康分數
|
907 |
-
# health_score = 1.0
|
908 |
-
|
909 |
-
# # 根據問題嚴重程度扣分
|
910 |
-
# severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
|
911 |
-
# moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
|
912 |
-
# minor_count = sum(1 for condition in minor_conditions if condition in health_notes)
|
913 |
-
|
914 |
-
# health_score -= (severe_count * 0.15)
|
915 |
-
# health_score -= (moderate_count * 0.1)
|
916 |
-
# health_score -= (minor_count * 0.05)
|
917 |
-
|
918 |
-
# # 壽命影響
|
919 |
-
# try:
|
920 |
-
# lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
|
921 |
-
# years = float(lifespan.split('-')[0])
|
922 |
-
# if years < 8:
|
923 |
-
# health_score *= 0.9
|
924 |
-
# elif years > 13:
|
925 |
-
# health_score *= 1.1
|
926 |
-
# except:
|
927 |
-
# pass
|
928 |
-
|
929 |
-
# # 特殊健康優勢
|
930 |
-
# if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
|
931 |
-
# health_score *= 1.1
|
932 |
-
|
933 |
-
# return max(0.2, min(1.0, health_score))
|
934 |
-
|
935 |
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
936 |
"""
|
937 |
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
|
@@ -1040,58 +974,6 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
1040 |
return max(0.1, min(1.0, health_score))
|
1041 |
|
1042 |
|
1043 |
-
# def calculate_noise_score(breed_name: str, user_noise_tolerance: str) -> float:
|
1044 |
-
# """計算品種噪音分數"""
|
1045 |
-
# if breed_name not in breed_noise_info:
|
1046 |
-
# return 0.5
|
1047 |
-
|
1048 |
-
# noise_info = breed_noise_info[breed_name]
|
1049 |
-
# noise_level = noise_info['noise_level'].lower()
|
1050 |
-
# noise_notes = noise_info['noise_notes'].lower()
|
1051 |
-
|
1052 |
-
# # 基礎噪音分數矩陣
|
1053 |
-
# base_scores = {
|
1054 |
-
# 'low': {'low': 1.0, 'medium': 0.9, 'high': 0.8},
|
1055 |
-
# 'medium': {'low': 0.7, 'medium': 1.0, 'high': 0.9},
|
1056 |
-
# 'high': {'low': 0.4, 'medium': 0.7, 'high': 1.0},
|
1057 |
-
# 'varies': {'low': 0.6, 'medium': 0.8, 'high': 0.9}
|
1058 |
-
# }
|
1059 |
-
|
1060 |
-
# # 獲取基礎分數
|
1061 |
-
# base_score = base_scores.get(noise_level, {'low': 0.7, 'medium': 0.8, 'high': 0.6})[user_noise_tolerance]
|
1062 |
-
|
1063 |
-
# # 吠叫原因評估
|
1064 |
-
# barking_reasons_penalty = 0
|
1065 |
-
# problematic_triggers = [
|
1066 |
-
# ('separation anxiety', -0.15),
|
1067 |
-
# ('excessive barking', -0.12),
|
1068 |
-
# ('territorial', -0.08),
|
1069 |
-
# ('alert barking', -0.05),
|
1070 |
-
# ('attention seeking', -0.05)
|
1071 |
-
# ]
|
1072 |
-
|
1073 |
-
# for trigger, penalty in problematic_triggers:
|
1074 |
-
# if trigger in noise_notes:
|
1075 |
-
# barking_reasons_penalty += penalty
|
1076 |
-
|
1077 |
-
# # 可訓練性補償
|
1078 |
-
# trainability_bonus = 0
|
1079 |
-
# if 'responds well to training' in noise_notes:
|
1080 |
-
# trainability_bonus = 0.1
|
1081 |
-
# elif 'can be trained' in noise_notes:
|
1082 |
-
# trainability_bonus = 0.05
|
1083 |
-
|
1084 |
-
# # 特殊情況
|
1085 |
-
# special_adjustments = 0
|
1086 |
-
# if 'rarely barks' in noise_notes:
|
1087 |
-
# special_adjustments += 0.1
|
1088 |
-
# if 'howls' in noise_notes and user_noise_tolerance == 'low':
|
1089 |
-
# special_adjustments -= 0.1
|
1090 |
-
|
1091 |
-
# final_score = base_score + barking_reasons_penalty + trainability_bonus + special_adjustments
|
1092 |
-
|
1093 |
-
# return max(0.2, min(1.0, final_score))
|
1094 |
-
|
1095 |
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
1096 |
"""
|
1097 |
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
|
@@ -1215,83 +1097,6 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
1215 |
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
|
1216 |
return max(0.1, min(1.0, final_score))
|
1217 |
|
1218 |
-
|
1219 |
-
# # 計算所有基礎分數
|
1220 |
-
# scores = {
|
1221 |
-
# 'space': calculate_space_score(
|
1222 |
-
# breed_info['Size'],
|
1223 |
-
# user_prefs.living_space,
|
1224 |
-
# user_prefs.space_for_play,
|
1225 |
-
# breed_info.get('Exercise Needs', 'Moderate')
|
1226 |
-
# ),
|
1227 |
-
# 'exercise': calculate_exercise_score(
|
1228 |
-
# breed_info.get('Exercise Needs', 'Moderate'),
|
1229 |
-
# user_prefs.exercise_time
|
1230 |
-
# ),
|
1231 |
-
# 'grooming': calculate_grooming_score(
|
1232 |
-
# breed_info.get('Grooming Needs', 'Moderate'),
|
1233 |
-
# user_prefs.grooming_commitment.lower(),
|
1234 |
-
# breed_info['Size']
|
1235 |
-
# ),
|
1236 |
-
# 'experience': calculate_experience_score(
|
1237 |
-
# breed_info.get('Care Level', 'Moderate'),
|
1238 |
-
# user_prefs.experience_level,
|
1239 |
-
# breed_info.get('Temperament', '')
|
1240 |
-
# ),
|
1241 |
-
# 'health': calculate_health_score(breed_info.get('Breed', '')),
|
1242 |
-
# 'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
1243 |
-
# }
|
1244 |
-
|
1245 |
-
|
1246 |
-
# # 優化權重配置
|
1247 |
-
# weights = {
|
1248 |
-
# 'space': 0.28,
|
1249 |
-
# 'exercise': 0.18,
|
1250 |
-
# 'grooming': 0.12,
|
1251 |
-
# 'experience': 0.22,
|
1252 |
-
# 'health': 0.12,
|
1253 |
-
# 'noise': 0.08
|
1254 |
-
# }
|
1255 |
-
|
1256 |
-
# # 計算加權總分
|
1257 |
-
# weighted_score = sum(score * weights[category] for category, score in scores.items())
|
1258 |
-
|
1259 |
-
# def amplify_score(score):
|
1260 |
-
# """
|
1261 |
-
# 優化分數放大函數,確保分數範圍合理且結果一致
|
1262 |
-
# """
|
1263 |
-
# # 基礎調整
|
1264 |
-
# adjusted = (score - 0.35) * 1.8
|
1265 |
-
|
1266 |
-
# # 使用 3.2 次方使曲線更平滑
|
1267 |
-
# amplified = pow(adjusted, 3.2) / 5.8 + score
|
1268 |
-
|
1269 |
-
# # 特別處理高分區間,確保不超過95%
|
1270 |
-
# if amplified > 0.90:
|
1271 |
-
# # 壓縮高分區間,確保最高到95%
|
1272 |
-
# amplified = 0.90 + (amplified - 0.90) * 0.5
|
1273 |
-
|
1274 |
-
# # 確保最終分數在合理範圍內(0.55-0.95)
|
1275 |
-
# final_score = max(0.55, min(0.95, amplified))
|
1276 |
-
|
1277 |
-
# # 四捨五入到小數點後第三位
|
1278 |
-
# return round(final_score, 3)
|
1279 |
-
|
1280 |
-
# final_score = amplify_score(weighted_score)
|
1281 |
-
|
1282 |
-
# # 四捨五入所有分數
|
1283 |
-
# scores = {k: round(v, 4) for k, v in scores.items()}
|
1284 |
-
# scores['overall'] = round(final_score, 4)
|
1285 |
-
|
1286 |
-
# return scores
|
1287 |
-
|
1288 |
-
# except Exception as e:
|
1289 |
-
# print(f"Error details: {str(e)}")
|
1290 |
-
# print(f"breed_info: {breed_info}")
|
1291 |
-
# # print(f"Error in calculate_compatibility_score: {str(e)}")
|
1292 |
-
# return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|
1293 |
-
|
1294 |
-
#
|
1295 |
print("\n=== 開始計算品種相容性分數 ===")
|
1296 |
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
|
1297 |
print(f"品種信息: {breed_info}")
|
@@ -1396,35 +1201,128 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
1396 |
|
1397 |
return penalty
|
1398 |
|
1399 |
-
# 計算權重和加權分數
|
1400 |
-
def calculate_weighted_score(scores: dict) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1401 |
"""
|
1402 |
-
|
|
|
|
|
|
|
|
|
|
|
1403 |
"""
|
|
|
1404 |
base_weights = {
|
1405 |
-
'space': 0.
|
1406 |
-
'exercise': 0.
|
1407 |
-
'grooming': 0.
|
1408 |
-
'experience': 0.
|
1409 |
'health': 0.12,
|
1410 |
-
'noise': 0.
|
1411 |
}
|
1412 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1413 |
# 根據居住環境調整權重
|
1414 |
if user_prefs.living_space == 'apartment':
|
|
|
1415 |
base_weights['space'] *= 1.2
|
|
|
|
|
|
|
|
|
|
|
|
|
1416 |
base_weights['noise'] *= 1.2
|
1417 |
-
|
1418 |
-
|
1419 |
-
if user_prefs.experience_level == 'beginner':
|
1420 |
-
base_weights['experience'] *= 1.3
|
1421 |
-
|
1422 |
# 重新正規化權重
|
1423 |
total_weight = sum(base_weights.values())
|
1424 |
weights = {k: v/total_weight for k, v in base_weights.items()}
|
1425 |
|
1426 |
-
#
|
1427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1428 |
|
1429 |
# 計算最終分數
|
1430 |
def calculate_final_score(base_score: float, penalty: float) -> float:
|
|
|
372 |
print("Missing Size information")
|
373 |
raise KeyError("Size information missing")
|
374 |
|
375 |
+
|
376 |
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
377 |
+
# # 重新設計基礎分數矩陣
|
|
|
378 |
# base_scores = {
|
379 |
+
# "Small": {
|
380 |
+
# "apartment": 1.0, # 小型犬最適合公寓
|
381 |
+
# "house_small": 0.95, # 在大房子反而稍微降分
|
382 |
+
# "house_large": 0.85 # 可能浪費空間
|
383 |
+
# },
|
384 |
+
# "Medium": {
|
385 |
+
# "apartment": 0.45, # 中型犬在公寓明顯受限
|
386 |
+
# "house_small": 0.85,
|
387 |
+
# "house_large": 1.0
|
388 |
+
# },
|
389 |
+
# "Large": {
|
390 |
+
# "apartment": 0.15, # 大型犬在公寓極不適合
|
391 |
+
# "house_small": 0.60, # 在小房子仍然受限
|
392 |
+
# "house_large": 1.0
|
393 |
+
# },
|
394 |
+
# "Giant": {
|
395 |
+
# "apartment": 0.1, # 更嚴格的限制
|
396 |
+
# "house_small": 0.45,
|
397 |
+
# "house_large": 1.0
|
398 |
+
# }
|
399 |
# }
|
400 |
|
401 |
# # 取得基礎分數
|
402 |
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
403 |
|
404 |
+
# # 運動需求調整更明顯
|
405 |
# exercise_adjustments = {
|
406 |
+
# "Very High": {
|
407 |
+
# "apartment": -0.25, # 在公寓更嚴重的懲罰
|
408 |
+
# "house_small": -0.15,
|
409 |
+
# "house_large": -0.05
|
410 |
+
# },
|
411 |
+
# "High": {
|
412 |
+
# "apartment": -0.20,
|
413 |
+
# "house_small": -0.10,
|
414 |
+
# "house_large": 0
|
415 |
+
# },
|
416 |
+
# "Moderate": {
|
417 |
+
# "apartment": -0.10,
|
418 |
+
# "house_small": -0.05,
|
419 |
+
# "house_large": 0
|
420 |
+
# },
|
421 |
+
# "Low": {
|
422 |
+
# "apartment": 0.05,
|
423 |
+
# "house_small": 0,
|
424 |
+
# "house_large": 0
|
425 |
+
# }
|
426 |
# }
|
427 |
|
428 |
+
# # 根據空間類型獲取對應的運動調整
|
429 |
+
# adjustment = exercise_adjustments.get(exercise_needs,
|
430 |
+
# exercise_adjustments["Moderate"])[living_space]
|
431 |
|
432 |
+
# # 院子獎勵也要根據犬種大小調整
|
433 |
+
# yard_bonus = 0
|
434 |
+
# if has_yard:
|
435 |
+
# if size in ["Large", "Giant"]:
|
436 |
+
# yard_bonus = 0.20 if living_space != "apartment" else 0.10
|
437 |
+
# elif size == "Medium":
|
438 |
+
# yard_bonus = 0.15 if living_space != "apartment" else 0.08
|
439 |
+
# else:
|
440 |
+
# yard_bonus = 0.10 if living_space != "apartment" else 0.05
|
441 |
+
|
442 |
+
# final_score = base_score + adjustment + yard_bonus
|
443 |
+
# return min(1.0, max(0.1, final_score))
|
444 |
+
|
445 |
|
446 |
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
447 |
+
"""
|
448 |
+
優化的空間分數計算函數
|
449 |
+
|
450 |
+
主要改進:
|
451 |
+
1. 更均衡的基礎分數分配
|
452 |
+
2. 更細緻的空間需求評估
|
453 |
+
3. 強化運動需求與空間的關聯性
|
454 |
+
"""
|
455 |
+
# 重新設計基礎分數矩陣,降低普遍分數以增加區別度
|
456 |
base_scores = {
|
457 |
"Small": {
|
458 |
+
"apartment": 0.85, # 降低滿分機會
|
459 |
+
"house_small": 0.80, # 小型犬不應在大空間得到太高分數
|
460 |
+
"house_large": 0.75 # 避免小型犬總是得到最高分
|
461 |
},
|
462 |
"Medium": {
|
463 |
+
"apartment": 0.45, # 維持對公寓環境的限制
|
464 |
+
"house_small": 0.75, # 適中的分數
|
465 |
+
"house_large": 0.85 # 給予合理的獎勵
|
466 |
},
|
467 |
"Large": {
|
468 |
+
"apartment": 0.15, # 加重對大型犬在公寓的限制
|
469 |
+
"house_small": 0.65, # 中等適合度
|
470 |
+
"house_large": 0.90 # 最適合的環境
|
471 |
},
|
472 |
"Giant": {
|
473 |
+
"apartment": 0.10, # 更嚴格的限制
|
474 |
+
"house_small": 0.45, # 顯著的空間限制
|
475 |
+
"house_large": 0.95 # 最理想的配對
|
476 |
}
|
477 |
}
|
478 |
|
479 |
# 取得基礎分數
|
480 |
base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
481 |
|
482 |
+
# 運動需求相關的調整更加動態
|
483 |
exercise_adjustments = {
|
484 |
"Very High": {
|
485 |
+
"apartment": -0.25, # 加重在受限空間的懲罰
|
486 |
"house_small": -0.15,
|
487 |
"house_large": -0.05
|
488 |
},
|
|
|
497 |
"house_large": 0
|
498 |
},
|
499 |
"Low": {
|
500 |
+
"apartment": 0.05, # 低運動需求在小空間反而有優勢
|
501 |
"house_small": 0,
|
502 |
+
"house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
503 |
}
|
504 |
}
|
505 |
|
506 |
+
# 根據空間類型獲取運動需求調整
|
507 |
adjustment = exercise_adjustments.get(exercise_needs,
|
508 |
exercise_adjustments["Moderate"])[living_space]
|
509 |
|
510 |
+
# 院子效益根據品種大小和運動需求動態調整
|
|
|
511 |
if has_yard:
|
512 |
+
yard_bonus = {
|
513 |
+
"Giant": 0.20,
|
514 |
+
"Large": 0.15,
|
515 |
+
"Medium": 0.10,
|
516 |
+
"Small": 0.05
|
517 |
+
}.get(size, 0.10)
|
518 |
+
|
519 |
+
# 運動需求會影響院子的重要性
|
520 |
+
if exercise_needs in ["Very High", "High"]:
|
521 |
+
yard_bonus *= 1.2
|
522 |
+
elif exercise_needs == "Low":
|
523 |
+
yard_bonus *= 0.8
|
524 |
|
525 |
+
current_score = base_score + adjustment + yard_bonus
|
526 |
+
else:
|
527 |
+
current_score = base_score + adjustment
|
528 |
+
|
529 |
+
# 確保分數在合理範圍內,但避免極端值
|
530 |
+
return min(0.95, max(0.15, current_score))
|
531 |
+
|
532 |
|
533 |
+
# def calculate_exercise_score(breed_needs: str, user_time: int) -> float:
|
534 |
+
# """運動需求計算"""
|
535 |
+
# exercise_needs = {
|
536 |
+
# 'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180},
|
537 |
+
# 'HIGH': {'min': 90, 'ideal': 120, 'max': 150},
|
538 |
+
# 'MODERATE': {'min': 45, 'ideal': 60, 'max': 90},
|
539 |
+
# 'LOW': {'min': 20, 'ideal': 30, 'max': 45},
|
540 |
+
# 'VARIES': {'min': 30, 'ideal': 60, 'max': 90}
|
541 |
+
# }
|
542 |
+
|
543 |
+
# breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE'])
|
544 |
+
|
545 |
+
# # 計算匹配度
|
546 |
+
# if user_time >= breed_need['ideal']:
|
547 |
+
# if user_time > breed_need['max']:
|
548 |
+
# return 0.9 # 稍微降分,因為可能過度運動
|
549 |
+
# return 1.0
|
550 |
+
# elif user_time >= breed_need['min']:
|
551 |
+
# return 0.8 + (user_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.2
|
552 |
+
# else:
|
553 |
+
# return max(0.3, 0.8 * (user_time / breed_need['min']))
|
554 |
+
|
555 |
+
|
556 |
+
def calculate_exercise_score(breed_needs: str, user_prefs: UserPreferences) -> float:
|
557 |
+
"""
|
558 |
+
優化的運動需求評分系統
|
559 |
+
|
560 |
+
改進:
|
561 |
+
1. 考慮運動類型的匹配度
|
562 |
+
2. 評估活動模式的適配性
|
563 |
+
3. 加入品種特性考量
|
564 |
+
"""
|
565 |
+
# 基礎運動需求評估
|
566 |
exercise_needs = {
|
567 |
+
'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180, 'intensity': 'high'},
|
568 |
+
'HIGH': {'min': 90, 'ideal': 120, 'max': 150, 'intensity': 'moderate_high'},
|
569 |
+
'MODERATE': {'min': 45, 'ideal': 60, 'max': 90, 'intensity': 'moderate'},
|
570 |
+
'LOW': {'min': 20, 'ideal': 30, 'max': 45, 'intensity': 'low'},
|
571 |
+
'VARIES': {'min': 30, 'ideal': 60, 'max': 90, 'intensity': 'moderate'}
|
572 |
}
|
573 |
|
574 |
breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE'])
|
575 |
|
576 |
+
# 基礎時間匹配度計算
|
577 |
+
if user_prefs.exercise_time >= breed_need['ideal']:
|
578 |
+
time_score = 1.0 if user_prefs.exercise_time <= breed_need['max'] else 0.9
|
579 |
+
elif user_prefs.exercise_time >= breed_need['min']:
|
580 |
+
time_score = 0.7 + (user_prefs.exercise_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.3
|
|
|
|
|
581 |
else:
|
582 |
+
time_score = max(0.3, 0.7 * (user_prefs.exercise_time / breed_need['min']))
|
583 |
+
|
584 |
+
# 運動類型匹配度評估
|
585 |
+
exercise_type_scores = {
|
586 |
+
'light_walks': {
|
587 |
+
'low': 1.0,
|
588 |
+
'moderate': 0.8,
|
589 |
+
'moderate_high': 0.5,
|
590 |
+
'high': 0.3
|
591 |
+
},
|
592 |
+
'moderate_activity': {
|
593 |
+
'low': 0.7,
|
594 |
+
'moderate': 1.0,
|
595 |
+
'moderate_high': 0.8,
|
596 |
+
'high': 0.6
|
597 |
+
},
|
598 |
+
'active_training': {
|
599 |
+
'low': 0.5,
|
600 |
+
'moderate': 0.8,
|
601 |
+
'moderate_high': 1.0,
|
602 |
+
'high': 1.0
|
603 |
+
}
|
604 |
+
}
|
605 |
|
606 |
+
type_score = exercise_type_scores.get(user_prefs.exercise_type, exercise_type_scores['moderate_activity']).get(breed_need['intensity'], 0.7)
|
|
|
607 |
|
608 |
+
# 時間可用性調整
|
609 |
+
availability_multiplier = {
|
610 |
+
'limited': 0.85, # 時間有限,可能影響運動品質
|
611 |
+
'moderate': 1.0, # 標準參考點
|
612 |
+
'flexible': 1.1 # 更靈活的時間安排有利於滿足狗狗需求
|
613 |
+
}.get(user_prefs.time_availability, 1.0)
|
614 |
|
615 |
+
# 環境因素考量
|
616 |
+
environment_bonus = 0
|
617 |
+
if user_prefs.yard_access != 'no_yard':
|
618 |
+
if breed_needs.strip().upper() in ['VERY HIGH', 'HIGH']:
|
619 |
+
environment_bonus = 0.1
|
620 |
+
else:
|
621 |
+
environment_bonus = 0.05
|
622 |
+
|
623 |
+
# 計算最終分數
|
624 |
+
final_score = (time_score * 0.5 + type_score * 0.3) * availability_multiplier + environment_bonus
|
625 |
+
|
626 |
+
return min(1.0, max(0.3, final_score))
|
627 |
|
628 |
|
629 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
|
|
755 |
|
756 |
# 確保分數在有意義的範圍內,但允許更大的差異
|
757 |
return max(0.1, min(1.0, final_score))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
758 |
|
759 |
|
760 |
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
|
|
866 |
|
867 |
return final_score
|
868 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
869 |
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
870 |
"""
|
871 |
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
|
|
|
974 |
return max(0.1, min(1.0, health_score))
|
975 |
|
976 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
977 |
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
978 |
"""
|
979 |
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
|
|
|
1097 |
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
|
1098 |
return max(0.1, min(1.0, final_score))
|
1099 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1100 |
print("\n=== 開始計算品種相容性分數 ===")
|
1101 |
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
|
1102 |
print(f"品種信息: {breed_info}")
|
|
|
1201 |
|
1202 |
return penalty
|
1203 |
|
1204 |
+
# # 計算權重和加權分數
|
1205 |
+
# def calculate_weighted_score(scores: dict) -> float:
|
1206 |
+
# """
|
1207 |
+
# 使用動態權重計算加權分數
|
1208 |
+
# """
|
1209 |
+
# base_weights = {
|
1210 |
+
# 'space': 0.28,
|
1211 |
+
# 'exercise': 0.18,
|
1212 |
+
# 'grooming': 0.12,
|
1213 |
+
# 'experience': 0.22,
|
1214 |
+
# 'health': 0.12,
|
1215 |
+
# 'noise': 0.08
|
1216 |
+
# }
|
1217 |
+
|
1218 |
+
# # 根據居住環境調整權重
|
1219 |
+
# if user_prefs.living_space == 'apartment':
|
1220 |
+
# base_weights['space'] *= 1.2
|
1221 |
+
# base_weights['noise'] *= 1.2
|
1222 |
+
|
1223 |
+
# # 根據經驗等級調整權重
|
1224 |
+
# if user_prefs.experience_level == 'beginner':
|
1225 |
+
# base_weights['experience'] *= 1.3
|
1226 |
+
|
1227 |
+
# # 重新正規化權重
|
1228 |
+
# total_weight = sum(base_weights.values())
|
1229 |
+
# weights = {k: v/total_weight for k, v in base_weights.items()}
|
1230 |
+
|
1231 |
+
# # 計算加權分數
|
1232 |
+
# return sum(score * weights[category] for category, score in scores.items())
|
1233 |
+
|
1234 |
+
def calculate_weighted_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1235 |
"""
|
1236 |
+
優化的加權分數計算函數
|
1237 |
+
|
1238 |
+
主要改進:
|
1239 |
+
1. 動態權重調整
|
1240 |
+
2. 品種特性加成
|
1241 |
+
3. 更平衡的分數分配
|
1242 |
"""
|
1243 |
+
# 基礎權重設定
|
1244 |
base_weights = {
|
1245 |
+
'space': 0.25, # 稍微降低空間權重
|
1246 |
+
'exercise': 0.20, # 提高運動權重
|
1247 |
+
'grooming': 0.15, # 略微提高美容權重
|
1248 |
+
'experience': 0.18, # 降低經驗權重,避免過度主導
|
1249 |
'health': 0.12,
|
1250 |
+
'noise': 0.10 # 提高噪音權重
|
1251 |
}
|
1252 |
|
1253 |
+
# 根據使用者經驗調整權重
|
1254 |
+
if user_prefs.experience_level == 'beginner':
|
1255 |
+
# 新手更注重易照顧程度
|
1256 |
+
base_weights['experience'] *= 1.2
|
1257 |
+
base_weights['health'] *= 1.1
|
1258 |
+
base_weights['grooming'] *= 0.9
|
1259 |
+
elif user_prefs.experience_level == 'advanced':
|
1260 |
+
# 專家更注重運動和訓練潛力
|
1261 |
+
base_weights['exercise'] *= 1.2
|
1262 |
+
base_weights['experience'] *= 0.8
|
1263 |
+
|
1264 |
# 根據居住環境調整權重
|
1265 |
if user_prefs.living_space == 'apartment':
|
1266 |
+
base_weights['noise'] *= 1.3
|
1267 |
base_weights['space'] *= 1.2
|
1268 |
+
elif user_prefs.living_space == 'house_large':
|
1269 |
+
base_weights['exercise'] *= 1.2
|
1270 |
+
base_weights['space'] *= 0.9
|
1271 |
+
|
1272 |
+
# 有孩童時的權重調整
|
1273 |
+
if user_prefs.has_children:
|
1274 |
base_weights['noise'] *= 1.2
|
1275 |
+
base_weights['health'] *= 1.1
|
1276 |
+
|
|
|
|
|
|
|
1277 |
# 重新正規化權重
|
1278 |
total_weight = sum(base_weights.values())
|
1279 |
weights = {k: v/total_weight for k, v in base_weights.items()}
|
1280 |
|
1281 |
+
# 計算基礎加權分數
|
1282 |
+
weighted_base = sum(score * weights[category] for category, score in scores.items())
|
1283 |
+
|
1284 |
+
# 計算品種特性加成
|
1285 |
+
breed_bonus = calculate_breed_characteristic_bonus(breed_info, user_prefs)
|
1286 |
+
|
1287 |
+
# 混合基礎分數和特性加成
|
1288 |
+
final_score = (weighted_base * 0.85) + (breed_bonus * 0.15)
|
1289 |
+
|
1290 |
+
return final_score
|
1291 |
+
|
1292 |
+
def calculate_breed_characteristic_bonus(breed_info: dict, user_prefs: UserPreferences) -> float:
|
1293 |
+
"""
|
1294 |
+
計算品種特性加成,增加品種多樣性
|
1295 |
+
"""
|
1296 |
+
bonus = 0.0
|
1297 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1298 |
+
description = breed_info.get('Description', '').lower()
|
1299 |
+
|
1300 |
+
# 品種類型加成
|
1301 |
+
breed_types = {
|
1302 |
+
'working': {'keywords': ['working', 'guard', 'protection'], 'bonus': 0.05},
|
1303 |
+
'companion': {'keywords': ['companion', 'friendly', 'affectionate'], 'bonus': 0.05},
|
1304 |
+
'sporting': {'keywords': ['hunting', 'sporting', 'athletic'], 'bonus': 0.05},
|
1305 |
+
'herding': {'keywords': ['herding', 'shepherd', 'cattle'], 'bonus': 0.05}
|
1306 |
+
}
|
1307 |
+
|
1308 |
+
# 根據使用場景給予特定加成
|
1309 |
+
for breed_type, info in breed_types.items():
|
1310 |
+
if any(keyword in description or keyword in temperament for keyword in info['keywords']):
|
1311 |
+
if user_prefs.has_children and breed_type == 'companion':
|
1312 |
+
bonus += info['bonus'] * 1.5
|
1313 |
+
elif user_prefs.exercise_type == 'active_training' and breed_type in ['working', 'sporting']:
|
1314 |
+
bonus += info['bonus'] * 1.3
|
1315 |
+
else:
|
1316 |
+
bonus += info['bonus']
|
1317 |
+
|
1318 |
+
# 特殊加成(增加多樣性)
|
1319 |
+
if 'rare' in description or 'unique' in description:
|
1320 |
+
bonus += 0.03
|
1321 |
+
if 'independent' in temperament and user_prefs.experience_level == 'advanced':
|
1322 |
+
bonus += 0.04
|
1323 |
+
|
1324 |
+
return min(0.15, bonus) # 限制最大加成
|
1325 |
+
|
1326 |
|
1327 |
# 計算最終分數
|
1328 |
def calculate_final_score(base_score: float, penalty: float) -> float:
|