Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +244 -378
scoring_calculation_system.py
CHANGED
@@ -1479,465 +1479,331 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1479 |
|
1480 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1481 |
# """
|
1482 |
-
#
|
1483 |
-
|
|
|
|
|
|
|
|
|
1484 |
# """
|
1485 |
-
#
|
1486 |
-
#
|
1487 |
-
#
|
1488 |
-
# space_multiplier = 1.0
|
1489 |
-
# if user_prefs.living_space == 'apartment':
|
1490 |
-
# if breed_info['Size'] == 'Giant':
|
1491 |
-
# space_multiplier = 0.3 # 嚴重不適合
|
1492 |
-
# elif breed_info['Size'] == 'Large':
|
1493 |
-
# space_multiplier = 0.4 # 明顯不適合
|
1494 |
-
# elif breed_info['Size'] == 'Small':
|
1495 |
-
# space_multiplier = 1.4 # 明顯優勢
|
1496 |
|
1497 |
-
# #
|
1498 |
-
#
|
|
|
|
|
|
|
|
|
|
|
1499 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1500 |
-
# if exercise_needs == 'VERY HIGH':
|
1501 |
-
#
|
1502 |
-
# exercise_multiplier = 0.3 # 嚴重不足
|
1503 |
-
# elif user_prefs.exercise_time > 150:
|
1504 |
-
# exercise_multiplier = 1.5 # 完美匹配
|
1505 |
# elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
1506 |
-
#
|
1507 |
-
|
1508 |
-
#
|
1509 |
-
|
1510 |
-
# # 計算經驗匹配度
|
1511 |
-
# def evaluate_experience():
|
1512 |
-
# exp_multiplier = 1.0
|
1513 |
# care_level = breed_info.get('Care Level', 'MODERATE')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1514 |
|
1515 |
-
#
|
1516 |
-
# if user_prefs.experience_level == 'beginner':
|
1517 |
-
# exp_multiplier = 0.4
|
1518 |
-
# elif user_prefs.experience_level == 'advanced':
|
1519 |
-
# exp_multiplier = 1.3
|
1520 |
-
# elif care_level == 'Low':
|
1521 |
-
# if user_prefs.experience_level == 'advanced':
|
1522 |
-
# exp_multiplier = 0.9 # 略微降低評分,因為可能不夠有挑戰性
|
1523 |
-
|
1524 |
-
# return exp_multiplier
|
1525 |
-
|
1526 |
-
# # 取得特徵調整係數
|
1527 |
-
# space_mult, exercise_mult = evaluate_key_features()
|
1528 |
-
# exp_mult = evaluate_experience()
|
1529 |
-
|
1530 |
-
# # 調整基礎分數
|
1531 |
-
# adjusted_scores = {
|
1532 |
-
# 'space': scores['space'] * space_mult,
|
1533 |
-
# 'exercise': scores['exercise'] * exercise_mult,
|
1534 |
-
# 'experience': scores['experience'] * exp_mult,
|
1535 |
-
# 'grooming': scores['grooming'],
|
1536 |
-
# 'health': scores['health'],
|
1537 |
-
# 'noise': scores['noise']
|
1538 |
-
# }
|
1539 |
-
|
1540 |
-
# # 計算加權平均,關鍵特徵佔更大權重
|
1541 |
-
# weights = {
|
1542 |
-
# 'space': 0.35,
|
1543 |
-
# 'exercise': 0.30,
|
1544 |
-
# 'experience': 0.20,
|
1545 |
-
# 'grooming': 0.15,
|
1546 |
-
# 'health': 0.10,
|
1547 |
-
# 'noise': 0.10
|
1548 |
-
# }
|
1549 |
-
|
1550 |
-
# # 動態調整權重
|
1551 |
-
# if user_prefs.has_children:
|
1552 |
-
# if user_prefs.children_age == 'toddler':
|
1553 |
-
# weights['noise'] *= 1.5 # 幼童對噪音更敏感
|
1554 |
-
# weights['experience'] *= 1.3 # 需要更有經驗的飼主
|
1555 |
-
|
1556 |
-
# if user_prefs.living_space == 'apartment':
|
1557 |
-
# weights['space'] *= 1.4 # 公寓空間限制更重要
|
1558 |
-
# weights['noise'] *= 1.3 # 噪音問題更重要
|
1559 |
-
|
1560 |
-
# # 運動時間極端情況
|
1561 |
-
# if user_prefs.exercise_time < 30:
|
1562 |
-
# weights['exercise'] *= 1.5 # 運動時間極少時加重權重
|
1563 |
-
# elif user_prefs.exercise_time > 150:
|
1564 |
-
# weights['exercise'] *= 1.3 # 運動時間充足時略微加重
|
1565 |
-
|
1566 |
-
# # 正規化權重
|
1567 |
-
# total_weight = sum(weights.values())
|
1568 |
-
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1569 |
-
|
1570 |
-
# # 計算最終分數
|
1571 |
-
# final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
|
1572 |
-
|
1573 |
-
# # 品種特性加成
|
1574 |
-
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1575 |
-
|
1576 |
-
# # 整合最終分數,保持在0-1範圍內
|
1577 |
-
# return min(1.0, max(0.0, (final_score * 0.85) + (breed_bonus * 0.15)))
|
1578 |
-
|
1579 |
-
|
1580 |
-
# def amplify_score_extreme(score: float) -> float:
|
1581 |
-
# """
|
1582 |
-
# 改進的分數轉換函數,提供更大的分數區間和更明顯的差異
|
1583 |
-
|
1584 |
-
# 轉換邏輯:
|
1585 |
-
# - 極差匹配 (0.0-0.2) -> 50-60%
|
1586 |
-
# - 較差匹配 (0.2-0.4) -> 60-70%
|
1587 |
-
# - 中等匹配 (0.4-0.6) -> 70-82%
|
1588 |
-
# - 良好匹配 (0.6-0.8) -> 82-90%
|
1589 |
-
# - 優秀匹配 (0.8-1.0) -> 90-98%
|
1590 |
-
# """
|
1591 |
-
# if score < 0.2:
|
1592 |
-
# # 極差匹配:更低的起始分數
|
1593 |
-
# return 0.50 + (score / 0.2) * 0.10
|
1594 |
-
# elif score < 0.4:
|
1595 |
-
# # 較差匹配:緩慢增長
|
1596 |
-
# position = (score - 0.2) / 0.2
|
1597 |
-
# return 0.60 + position * 0.10
|
1598 |
-
# elif score < 0.6:
|
1599 |
-
# # 中等匹配:較大的分數增長
|
1600 |
-
# position = (score - 0.4) / 0.2
|
1601 |
-
# return 0.70 + position * 0.12
|
1602 |
-
# elif score < 0.8:
|
1603 |
-
# # 良好匹配:快速增長
|
1604 |
-
# position = (score - 0.6) / 0.2
|
1605 |
-
# return 0.82 + position * 0.08
|
1606 |
-
# else:
|
1607 |
-
# # 優秀匹配:達到更高分數
|
1608 |
-
# position = (score - 0.8) / 0.2
|
1609 |
-
# return 0.90 + position * 0.08
|
1610 |
-
|
1611 |
-
|
1612 |
-
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1613 |
-
# """改進的品種相容性評分系統"""
|
1614 |
-
|
1615 |
-
# def evaluate_key_features():
|
1616 |
-
# # 空間適配性評估 - 更極端的調整
|
1617 |
-
# space_multiplier = 1.0
|
1618 |
# if user_prefs.living_space == 'apartment':
|
1619 |
-
#
|
1620 |
-
#
|
1621 |
-
# elif breed_info['Size'] == 'Large':
|
1622 |
-
# space_multiplier = 0.3
|
1623 |
-
# elif breed_info['Size'] == 'Medium':
|
1624 |
-
# space_multiplier = 0.7
|
1625 |
-
# elif breed_info['Size'] == 'Small':
|
1626 |
-
# space_multiplier = 1.6 # 更大的獎勵
|
1627 |
-
|
1628 |
-
# # 運動需求評估 - 更細緻的匹配
|
1629 |
-
# exercise_multiplier = 1.0
|
1630 |
-
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1631 |
|
1632 |
-
# #
|
1633 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1634 |
|
1635 |
-
#
|
1636 |
-
#
|
1637 |
-
#
|
1638 |
-
#
|
1639 |
-
#
|
1640 |
-
|
1641 |
-
#
|
1642 |
-
#
|
1643 |
-
#
|
1644 |
-
|
1645 |
-
#
|
1646 |
-
# if user_prefs.exercise_time > 120:
|
1647 |
-
# exercise_multiplier = max(0.4, 1.0 - time_diff_ratio/2)
|
1648 |
-
|
1649 |
-
# return space_multiplier, exercise_multiplier
|
1650 |
-
|
1651 |
-
# def get_ideal_exercise_time(exercise_needs: str) -> int:
|
1652 |
-
# """獲取理想運動時間"""
|
1653 |
-
# return {
|
1654 |
-
# 'VERY HIGH': 150,
|
1655 |
-
# 'HIGH': 120,
|
1656 |
-
# 'MODERATE HIGH': 90,
|
1657 |
-
# 'MODERATE': 60,
|
1658 |
-
# 'MODERATE LOW': 45,
|
1659 |
-
# 'LOW': 30
|
1660 |
-
# }.get(exercise_needs, 60)
|
1661 |
-
|
1662 |
-
# # 經驗匹配度評估 - 更強的影響力
|
1663 |
-
# def evaluate_experience():
|
1664 |
-
# exp_multiplier = 1.0
|
1665 |
-
# care_level = breed_info.get('Care Level', 'MODERATE')
|
1666 |
-
|
1667 |
-
# if care_level == 'High':
|
1668 |
-
# if user_prefs.experience_level == 'beginner':
|
1669 |
-
# exp_multiplier = 0.3 # 更嚴重的懲罰
|
1670 |
-
# elif user_prefs.experience_level == 'advanced':
|
1671 |
-
# exp_multiplier = 1.5 # 更大的獎勵
|
1672 |
-
# elif care_level == 'Low':
|
1673 |
-
# if user_prefs.experience_level == 'advanced':
|
1674 |
-
# exp_multiplier = 0.8
|
1675 |
-
|
1676 |
-
# return exp_multiplier
|
1677 |
-
|
1678 |
-
# # 計算調整係數
|
1679 |
-
# space_mult, exercise_mult = evaluate_key_features()
|
1680 |
-
# exp_mult = evaluate_experience()
|
1681 |
-
|
1682 |
-
# # 調整基礎分數
|
1683 |
-
# adjusted_scores = {
|
1684 |
-
# 'space': scores['space'] * space_mult,
|
1685 |
-
# 'exercise': scores['exercise'] * exercise_mult,
|
1686 |
-
# 'experience': scores['experience'] * exp_mult,
|
1687 |
-
# 'grooming': scores['grooming'],
|
1688 |
-
# 'health': scores['health'] * (1.5 if user_prefs.health_sensitivity == 'high' else 1.0),
|
1689 |
-
# 'noise': scores['noise']
|
1690 |
-
# }
|
1691 |
-
|
1692 |
-
# # 基礎權重
|
1693 |
-
# weights = {
|
1694 |
-
# 'space': 0.25,
|
1695 |
-
# 'exercise': 0.25,
|
1696 |
-
# 'experience': 0.15,
|
1697 |
-
# 'grooming': 0.15,
|
1698 |
-
# 'health': 0.10,
|
1699 |
-
# 'noise': 0.10
|
1700 |
-
# }
|
1701 |
-
|
1702 |
-
# # 動態權重調整 - 更強的條件反應
|
1703 |
-
# if user_prefs.has_children:
|
1704 |
-
# if user_prefs.children_age == 'toddler':
|
1705 |
-
# weights['noise'] *= 2.0 # 更強的噪音影響
|
1706 |
-
# weights['experience'] *= 1.5
|
1707 |
-
# weights['health'] *= 1.3
|
1708 |
-
# elif user_prefs.children_age == 'school_age':
|
1709 |
-
# weights['noise'] *= 1.5
|
1710 |
-
# weights['experience'] *= 1.3
|
1711 |
-
|
1712 |
-
# if user_prefs.living_space == 'apartment':
|
1713 |
-
# weights['space'] *= 1.8 # 更強的空間限制
|
1714 |
-
# weights['noise'] *= 1.6
|
1715 |
-
|
1716 |
-
# # 運動時間極端情況
|
1717 |
-
# if user_prefs.exercise_time < 30:
|
1718 |
-
# weights['exercise'] *= 2.0
|
1719 |
-
# elif user_prefs.exercise_time > 150:
|
1720 |
-
# weights['exercise'] *= 1.5
|
1721 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1722 |
# # 正規化權重
|
1723 |
# total_weight = sum(weights.values())
|
1724 |
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1725 |
-
|
1726 |
-
# #
|
1727 |
-
#
|
|
|
|
|
|
|
|
|
|
|
1728 |
|
1729 |
# # 品種特性加成
|
1730 |
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1731 |
|
1732 |
-
# #
|
1733 |
-
#
|
|
|
|
|
|
|
1734 |
|
1735 |
# # 完美匹配加成
|
1736 |
-
# if all(score >= 0.8 for score in
|
1737 |
-
# base_score *= 1.
|
1738 |
|
1739 |
-
# #
|
1740 |
-
#
|
1741 |
-
|
1742 |
-
|
1743 |
-
#
|
|
|
|
|
1744 |
|
1745 |
|
1746 |
# def amplify_score_extreme(score: float) -> float:
|
1747 |
# """
|
1748 |
-
#
|
1749 |
|
1750 |
-
#
|
1751 |
-
#
|
1752 |
-
#
|
1753 |
-
#
|
1754 |
-
# - 良好匹配 (0.6-0.8) -> 85-92%
|
1755 |
-
# - 優秀匹配 (0.8-0.9) -> 92-96%
|
1756 |
-
# - 完美匹配 (0.9-1.0) -> 96-99%
|
1757 |
# """
|
|
|
|
|
|
|
|
|
|
|
1758 |
# if score < 0.2:
|
1759 |
-
#
|
|
|
|
|
|
|
|
|
|
|
1760 |
# elif score < 0.4:
|
|
|
|
|
|
|
1761 |
# position = (score - 0.2) / 0.2
|
1762 |
-
# return
|
|
|
1763 |
# elif score < 0.6:
|
|
|
|
|
|
|
1764 |
# position = (score - 0.4) / 0.2
|
1765 |
-
# return
|
|
|
1766 |
# elif score < 0.8:
|
|
|
|
|
|
|
1767 |
# position = (score - 0.6) / 0.2
|
1768 |
-
# return
|
|
|
1769 |
# elif score < 0.9:
|
|
|
|
|
|
|
1770 |
# position = (score - 0.8) / 0.1
|
1771 |
-
# return
|
|
|
1772 |
# else:
|
|
|
|
|
|
|
1773 |
# position = (score - 0.9) / 0.1
|
1774 |
-
# return
|
1775 |
|
1776 |
|
1777 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1778 |
"""
|
1779 |
-
|
1780 |
-
|
1781 |
-
主要改進:
|
1782 |
-
1. 更動態的權重系統
|
1783 |
-
2. 更強的極端情況處理
|
1784 |
-
3. 更精確的品種特性評估
|
1785 |
"""
|
1786 |
-
def
|
1787 |
-
"""
|
1788 |
-
|
|
|
|
|
|
|
|
|
|
|
1789 |
|
1790 |
-
#
|
1791 |
-
if user_prefs.living_space == 'apartment'
|
1792 |
-
|
1793 |
-
elif user_prefs.living_space == 'house_large'
|
1794 |
-
|
1795 |
|
1796 |
-
#
|
1797 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1798 |
-
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time
|
1799 |
-
|
1800 |
-
elif exercise_needs == 'LOW' and user_prefs.exercise_time
|
1801 |
-
|
|
|
|
|
1802 |
|
1803 |
-
#
|
1804 |
care_level = breed_info.get('Care Level', 'MODERATE')
|
1805 |
-
if care_level == 'High' and user_prefs.experience_level == '
|
1806 |
-
|
|
|
|
|
|
|
|
|
1807 |
|
1808 |
-
|
|
|
|
|
|
|
|
|
1809 |
|
1810 |
-
def
|
1811 |
"""計算動態權重"""
|
1812 |
-
|
1813 |
-
weights = {
|
1814 |
'space': 0.20,
|
1815 |
'exercise': 0.20,
|
1816 |
-
'experience': 0.
|
1817 |
'grooming': 0.15,
|
1818 |
'health': 0.15,
|
1819 |
-
'noise': 0.
|
1820 |
}
|
1821 |
|
1822 |
-
#
|
1823 |
-
|
1824 |
-
weights['space'] *= 2.0
|
1825 |
-
weights['noise'] *= 1.8
|
1826 |
-
|
1827 |
-
# 根據家庭情況調整
|
1828 |
-
if user_prefs.has_children:
|
1829 |
-
if user_prefs.children_age == 'toddler':
|
1830 |
-
weights['noise'] *= 2.0
|
1831 |
-
weights['experience'] *= 1.8
|
1832 |
-
weights['health'] *= 1.5
|
1833 |
-
elif user_prefs.children_age == 'school_age':
|
1834 |
-
weights['noise'] *= 1.5
|
1835 |
-
weights['experience'] *= 1.3
|
1836 |
|
1837 |
-
#
|
1838 |
-
if user_prefs.
|
1839 |
-
|
1840 |
-
elif user_prefs.
|
1841 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1842 |
|
1843 |
-
#
|
1844 |
-
|
1845 |
-
|
1846 |
|
1847 |
-
return
|
1848 |
|
1849 |
-
#
|
1850 |
-
|
1851 |
|
1852 |
# 計算動態權重
|
1853 |
-
weights =
|
1854 |
|
1855 |
# 正規化權重
|
1856 |
total_weight = sum(weights.values())
|
1857 |
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1858 |
|
1859 |
-
#
|
1860 |
-
|
1861 |
-
|
1862 |
-
|
1863 |
-
|
1864 |
-
|
1865 |
-
|
1866 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1867 |
# 品種特性加成
|
1868 |
-
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1869 |
-
|
1870 |
-
# 根據極端程度調整最終分數
|
1871 |
-
if extremity_level >= 3:
|
1872 |
-
base_score *= 0.6 # 多個極端條件的嚴重懲罰
|
1873 |
-
elif extremity_level >= 2:
|
1874 |
-
base_score *= 0.8 # 較少極端條件的適度懲罰
|
1875 |
-
|
1876 |
-
# 完美匹配加成
|
1877 |
-
if all(score >= 0.8 for score in scores.values()):
|
1878 |
-
base_score *= 1.3
|
1879 |
|
1880 |
-
#
|
1881 |
-
|
1882 |
|
1883 |
-
|
1884 |
-
final_score = (base_score * (1.0 - bonus_weight)) + (breed_bonus * bonus_weight)
|
1885 |
|
1886 |
-
return min(1.0, max(0.0, final_score))
|
1887 |
-
|
1888 |
|
1889 |
def amplify_score_extreme(score: float) -> float:
|
1890 |
"""
|
1891 |
-
|
1892 |
-
|
1893 |
-
|
1894 |
-
|
1895 |
-
|
1896 |
-
|
|
|
1897 |
"""
|
1898 |
-
def
|
1899 |
-
"""使用
|
1900 |
import math
|
1901 |
return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
1902 |
|
1903 |
-
if score
|
1904 |
-
#
|
1905 |
-
|
1906 |
-
|
1907 |
-
position = score / 0.2
|
1908 |
-
return base + (sigmoid_transform(position) * range_score)
|
1909 |
|
1910 |
-
elif score
|
1911 |
-
#
|
1912 |
-
|
1913 |
-
|
1914 |
-
position = (score - 0.2) / 0.2
|
1915 |
-
return base + (sigmoid_transform(position) * range_score)
|
1916 |
|
1917 |
-
elif score
|
1918 |
-
#
|
1919 |
-
|
1920 |
-
|
1921 |
-
position = (score - 0.4) / 0.2
|
1922 |
-
return base + (sigmoid_transform(position) * range_score)
|
1923 |
|
1924 |
-
elif score
|
1925 |
-
#
|
1926 |
-
|
1927 |
-
|
1928 |
-
|
1929 |
-
return base + (sigmoid_transform(position) * range_score)
|
1930 |
|
1931 |
-
elif score
|
1932 |
-
#
|
1933 |
-
|
1934 |
-
|
1935 |
-
|
1936 |
-
return base + (sigmoid_transform(position) * range_score)
|
1937 |
|
1938 |
else:
|
1939 |
-
#
|
1940 |
-
|
1941 |
-
|
1942 |
-
|
1943 |
-
return base + (sigmoid_transform(position) * range_score)
|
|
|
1479 |
|
1480 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1481 |
# """
|
1482 |
+
# 改進的品種相容性評分系統,提供更動態和精確的評分
|
1483 |
+
|
1484 |
+
# 主要改進:
|
1485 |
+
# 1. 更動態的權重系統
|
1486 |
+
# 2. 更強的極端情況處理
|
1487 |
+
# 3. 更精確的品種特性評估
|
1488 |
# """
|
1489 |
+
# def evaluate_condition_extremity():
|
1490 |
+
# """評估使用者條件的極端程度"""
|
1491 |
+
# extremity_count = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1492 |
|
1493 |
+
# # 空間條件極端性
|
1494 |
+
# if user_prefs.living_space == 'apartment' and breed_info['Size'] in ['Large', 'Giant']:
|
1495 |
+
# extremity_count += 2
|
1496 |
+
# elif user_prefs.living_space == 'house_large' and breed_info['Size'] == 'Small':
|
1497 |
+
# extremity_count += 1
|
1498 |
+
|
1499 |
+
# # 運動需求極端性
|
1500 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1501 |
+
# if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
1502 |
+
# extremity_count += 2
|
|
|
|
|
|
|
1503 |
# elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
1504 |
+
# extremity_count += 1
|
1505 |
+
|
1506 |
+
# # 經驗等級極端性
|
|
|
|
|
|
|
|
|
1507 |
# care_level = breed_info.get('Care Level', 'MODERATE')
|
1508 |
+
# if care_level == 'High' and user_prefs.experience_level == 'beginner':
|
1509 |
+
# extremity_count += 2
|
1510 |
+
|
1511 |
+
# return extremity_count
|
1512 |
+
|
1513 |
+
# def calculate_dynamic_weights():
|
1514 |
+
# """計算動態權重"""
|
1515 |
+
# # 基礎權重
|
1516 |
+
# weights = {
|
1517 |
+
# 'space': 0.20,
|
1518 |
+
# 'exercise': 0.20,
|
1519 |
+
# 'experience': 0.15,
|
1520 |
+
# 'grooming': 0.15,
|
1521 |
+
# 'health': 0.15,
|
1522 |
+
# 'noise': 0.15
|
1523 |
+
# }
|
1524 |
|
1525 |
+
# # 根據生活環境調整權重
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1526 |
# if user_prefs.living_space == 'apartment':
|
1527 |
+
# weights['space'] *= 2.0
|
1528 |
+
# weights['noise'] *= 1.8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1529 |
|
1530 |
+
# # 根據家庭情況調整
|
1531 |
+
# if user_prefs.has_children:
|
1532 |
+
# if user_prefs.children_age == 'toddler':
|
1533 |
+
# weights['noise'] *= 2.0
|
1534 |
+
# weights['experience'] *= 1.8
|
1535 |
+
# weights['health'] *= 1.5
|
1536 |
+
# elif user_prefs.children_age == 'school_age':
|
1537 |
+
# weights['noise'] *= 1.5
|
1538 |
+
# weights['experience'] *= 1.3
|
1539 |
|
1540 |
+
# # 根據運動時間調整
|
1541 |
+
# if user_prefs.exercise_time < 30:
|
1542 |
+
# weights['exercise'] *= 2.5
|
1543 |
+
# elif user_prefs.exercise_time > 150:
|
1544 |
+
# weights['exercise'] *= 2.0
|
1545 |
+
|
1546 |
+
# # 根據健康敏感度調整
|
1547 |
+
# if user_prefs.health_sensitivity == 'high':
|
1548 |
+
# weights['health'] *= 1.8
|
1549 |
+
|
1550 |
+
# return weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1551 |
|
1552 |
+
# # 計算條件極端程度
|
1553 |
+
# extremity_level = evaluate_condition_extremity()
|
1554 |
+
|
1555 |
+
# # 計算動態權重
|
1556 |
+
# weights = calculate_dynamic_weights()
|
1557 |
+
|
1558 |
# # 正規化權重
|
1559 |
# total_weight = sum(weights.values())
|
1560 |
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1561 |
+
|
1562 |
+
# # 計算加權分數
|
1563 |
+
# weighted_scores = {
|
1564 |
+
# k: scores[k] * normalized_weights[k] for k in scores.keys()
|
1565 |
+
# }
|
1566 |
+
|
1567 |
+
# # 基礎分數
|
1568 |
+
# base_score = sum(weighted_scores.values())
|
1569 |
|
1570 |
# # 品種特性加成
|
1571 |
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1572 |
|
1573 |
+
# # 根據極端程度調整最終分數
|
1574 |
+
# if extremity_level >= 3:
|
1575 |
+
# base_score *= 0.6 # 多個極端條件的嚴重懲罰
|
1576 |
+
# elif extremity_level >= 2:
|
1577 |
+
# base_score *= 0.8 # 較少極端條件的適度懲罰
|
1578 |
|
1579 |
# # 完美匹配加成
|
1580 |
+
# if all(score >= 0.8 for score in scores.values()):
|
1581 |
+
# base_score *= 1.3
|
1582 |
|
1583 |
+
# # 品種特性影響力隨匹配度增加
|
1584 |
+
# bonus_weight = min(0.35, max(0.15, breed_bonus))
|
1585 |
+
|
1586 |
+
# # 最終分數計算
|
1587 |
+
# final_score = (base_score * (1.0 - bonus_weight)) + (breed_bonus * bonus_weight)
|
1588 |
+
|
1589 |
+
# return min(1.0, max(0.0, final_score))
|
1590 |
|
1591 |
|
1592 |
# def amplify_score_extreme(score: float) -> float:
|
1593 |
# """
|
1594 |
+
# 改進的分數轉換函數,提供更合理的分數分布
|
1595 |
|
1596 |
+
# 特點:
|
1597 |
+
# 1. 更大的分數範圍
|
1598 |
+
# 2. 更平滑的轉換曲線
|
1599 |
+
# 3. 更準確的極端情況處理
|
|
|
|
|
|
|
1600 |
# """
|
1601 |
+
# def sigmoid_transform(x: float, steepness: float = 10) -> float:
|
1602 |
+
# """使用 sigmoid 函數實現更平滑的轉換"""
|
1603 |
+
# import math
|
1604 |
+
# return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
1605 |
+
|
1606 |
# if score < 0.2:
|
1607 |
+
# # 極差匹配:使用更低的起始分數
|
1608 |
+
# base = 0.40
|
1609 |
+
# range_score = 0.15
|
1610 |
+
# position = score / 0.2
|
1611 |
+
# return base + (sigmoid_transform(position) * range_score)
|
1612 |
+
|
1613 |
# elif score < 0.4:
|
1614 |
+
# # 較差匹配:緩慢增長
|
1615 |
+
# base = 0.55
|
1616 |
+
# range_score = 0.15
|
1617 |
# position = (score - 0.2) / 0.2
|
1618 |
+
# return base + (sigmoid_transform(position) * range_score)
|
1619 |
+
|
1620 |
# elif score < 0.6:
|
1621 |
+
# # 中等匹配:較大增長
|
1622 |
+
# base = 0.70
|
1623 |
+
# range_score = 0.15
|
1624 |
# position = (score - 0.4) / 0.2
|
1625 |
+
# return base + (sigmoid_transform(position) * range_score)
|
1626 |
+
|
1627 |
# elif score < 0.8:
|
1628 |
+
# # 良好匹配:快速增長
|
1629 |
+
# base = 0.85
|
1630 |
+
# range_score = 0.10
|
1631 |
# position = (score - 0.6) / 0.2
|
1632 |
+
# return base + (sigmoid_transform(position) * range_score)
|
1633 |
+
|
1634 |
# elif score < 0.9:
|
1635 |
+
# # 優秀匹配:接近最高分
|
1636 |
+
# base = 0.95
|
1637 |
+
# range_score = 0.03
|
1638 |
# position = (score - 0.8) / 0.1
|
1639 |
+
# return base + (sigmoid_transform(position) * range_score)
|
1640 |
+
|
1641 |
# else:
|
1642 |
+
# # 完美匹配:可能達到最高分
|
1643 |
+
# base = 0.98
|
1644 |
+
# range_score = 0.02
|
1645 |
# position = (score - 0.9) / 0.1
|
1646 |
+
# return base + (sigmoid_transform(position) * range_score)
|
1647 |
|
1648 |
|
1649 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1650 |
"""
|
1651 |
+
重構的品種相容性評分系統
|
1652 |
+
目標:實現更大的分數差異和更高的頂部分數
|
|
|
|
|
|
|
|
|
1653 |
"""
|
1654 |
+
def evaluate_perfect_conditions():
|
1655 |
+
"""評估完美條件匹配度"""
|
1656 |
+
perfect_matches = {
|
1657 |
+
'size_match': False,
|
1658 |
+
'exercise_match': False,
|
1659 |
+
'experience_match': False,
|
1660 |
+
'general_match': False
|
1661 |
+
}
|
1662 |
|
1663 |
+
# 體型與空間匹配
|
1664 |
+
if user_prefs.living_space == 'apartment':
|
1665 |
+
perfect_matches['size_match'] = breed_info['Size'] == 'Small'
|
1666 |
+
elif user_prefs.living_space == 'house_large':
|
1667 |
+
perfect_matches['size_match'] = breed_info['Size'] in ['Medium', 'Large']
|
1668 |
|
1669 |
+
# 運動需求匹配
|
1670 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1671 |
+
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time >= 150:
|
1672 |
+
perfect_matches['exercise_match'] = True
|
1673 |
+
elif exercise_needs == 'LOW' and 30 <= user_prefs.exercise_time <= 90:
|
1674 |
+
perfect_matches['exercise_match'] = True
|
1675 |
+
elif 60 <= user_prefs.exercise_time <= 120:
|
1676 |
+
perfect_matches['exercise_match'] = True
|
1677 |
|
1678 |
+
# 經驗匹配
|
1679 |
care_level = breed_info.get('Care Level', 'MODERATE')
|
1680 |
+
if care_level == 'High' and user_prefs.experience_level == 'advanced':
|
1681 |
+
perfect_matches['experience_match'] = True
|
1682 |
+
elif care_level == 'Low' and user_prefs.experience_level == 'beginner':
|
1683 |
+
perfect_matches['experience_match'] = True
|
1684 |
+
elif user_prefs.experience_level == 'intermediate':
|
1685 |
+
perfect_matches['experience_match'] = True
|
1686 |
|
1687 |
+
# 一般條件匹配
|
1688 |
+
if all(score >= 0.85 for score in scores.values()):
|
1689 |
+
perfect_matches['general_match'] = True
|
1690 |
+
|
1691 |
+
return perfect_matches
|
1692 |
|
1693 |
+
def calculate_weights():
|
1694 |
"""計算動態權重"""
|
1695 |
+
base_weights = {
|
|
|
1696 |
'space': 0.20,
|
1697 |
'exercise': 0.20,
|
1698 |
+
'experience': 0.20,
|
1699 |
'grooming': 0.15,
|
1700 |
'health': 0.15,
|
1701 |
+
'noise': 0.10
|
1702 |
}
|
1703 |
|
1704 |
+
# 極端條件權重調整
|
1705 |
+
multipliers = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1706 |
|
1707 |
+
# 經驗權重調整
|
1708 |
+
if user_prefs.experience_level == 'beginner':
|
1709 |
+
multipliers['experience'] = 3.0 # 新手經驗極其重要
|
1710 |
+
elif user_prefs.experience_level == 'advanced':
|
1711 |
+
multipliers['experience'] = 2.5 # 專家經驗很重要
|
1712 |
+
|
1713 |
+
# 運動需求權重調整
|
1714 |
+
if user_prefs.exercise_time > 150:
|
1715 |
+
multipliers['exercise'] = 3.0
|
1716 |
+
elif user_prefs.exercise_time < 30:
|
1717 |
+
multipliers['exercise'] = 3.5
|
1718 |
+
|
1719 |
+
# 空間限制權重調整
|
1720 |
+
if user_prefs.living_space == 'apartment':
|
1721 |
+
multipliers['space'] = 2.5
|
1722 |
+
multipliers['noise'] = 2.0
|
1723 |
|
1724 |
+
# 應用乘數
|
1725 |
+
for key, multiplier in multipliers.items():
|
1726 |
+
base_weights[key] *= multiplier
|
1727 |
|
1728 |
+
return base_weights
|
1729 |
|
1730 |
+
# 評估完美匹配條件
|
1731 |
+
perfect_conditions = evaluate_perfect_conditions()
|
1732 |
|
1733 |
# 計算動態權重
|
1734 |
+
weights = calculate_weights()
|
1735 |
|
1736 |
# 正規化權重
|
1737 |
total_weight = sum(weights.values())
|
1738 |
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1739 |
|
1740 |
+
# 計算基礎分數
|
1741 |
+
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1742 |
+
|
1743 |
+
# 完美匹配獎勵
|
1744 |
+
perfect_bonus = 1.0
|
1745 |
+
if perfect_conditions['size_match']:
|
1746 |
+
perfect_bonus += 0.2
|
1747 |
+
if perfect_conditions['exercise_match']:
|
1748 |
+
perfect_bonus += 0.2
|
1749 |
+
if perfect_conditions['experience_match']:
|
1750 |
+
perfect_bonus += 0.2
|
1751 |
+
if perfect_conditions['general_match']:
|
1752 |
+
perfect_bonus += 0.2
|
1753 |
+
|
1754 |
# 品種特性加成
|
1755 |
+
breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.5 # 增加品種特性影響
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1756 |
|
1757 |
+
# 計算最終分數
|
1758 |
+
final_score = (base_score * 0.7 + breed_bonus * 0.3) * perfect_bonus
|
1759 |
|
1760 |
+
return min(1.0, final_score)
|
|
|
1761 |
|
|
|
|
|
1762 |
|
1763 |
def amplify_score_extreme(score: float) -> float:
|
1764 |
"""
|
1765 |
+
改進的分數轉換函數:實現更高的頂部分數
|
1766 |
+
- 完美匹配可達到95-99%
|
1767 |
+
- 優秀匹配在90-95%
|
1768 |
+
- 良好匹配在85-90%
|
1769 |
+
- 一般匹配在75-85%
|
1770 |
+
- 較差匹配在65-75%
|
1771 |
+
- 極差匹配在50-65%
|
1772 |
"""
|
1773 |
+
def smooth_curve(x: float, steepness: float = 12) -> float:
|
1774 |
+
"""使用sigmoid curve"""
|
1775 |
import math
|
1776 |
return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
1777 |
|
1778 |
+
if score >= 0.9:
|
1779 |
+
# 完美匹配:95-99%
|
1780 |
+
position = (score - 0.9) / 0.1
|
1781 |
+
return 0.95 + (position * 0.04)
|
|
|
|
|
1782 |
|
1783 |
+
elif score >= 0.8:
|
1784 |
+
# 優秀匹配:90-95%
|
1785 |
+
position = (score - 0.8) / 0.1
|
1786 |
+
return 0.90 + (position * 0.05)
|
|
|
|
|
1787 |
|
1788 |
+
elif score >= 0.7:
|
1789 |
+
# 良好匹配:85-90%
|
1790 |
+
position = (score - 0.7) / 0.1
|
1791 |
+
return 0.85 + (position * 0.05)
|
|
|
|
|
1792 |
|
1793 |
+
elif score >= 0.5:
|
1794 |
+
# 一般匹配:75-85%
|
1795 |
+
position = (score - 0.5) / 0.2
|
1796 |
+
base = 0.75
|
1797 |
+
return base + (smooth_curve(position) * 0.10)
|
|
|
1798 |
|
1799 |
+
elif score >= 0.3:
|
1800 |
+
# 較差匹配:65-75%
|
1801 |
+
position = (score - 0.3) / 0.2
|
1802 |
+
base = 0.65
|
1803 |
+
return base + (smooth_curve(position) * 0.10)
|
|
|
1804 |
|
1805 |
else:
|
1806 |
+
# 極差匹配:50-65%
|
1807 |
+
position = score / 0.3
|
1808 |
+
base = 0.50
|
1809 |
+
return base + (smooth_curve(position) * 0.15)
|
|