DawnC commited on
Commit
26fb104
1 Parent(s): de606c8

Update breed_detection.py

Browse files
Files changed (1) hide show
  1. breed_detection.py +48 -143
breed_detection.py CHANGED
@@ -2,151 +2,56 @@ import re
2
  import gradio as gr
3
  from PIL import Image
4
 
5
- # def create_detection_tab(predict_fn, example_images):
6
- # with gr.TabItem("Breed Detection"):
7
- # gr.HTML("""
8
- # <div style='
9
- # text-align: center;
10
- # padding: 20px 0;
11
- # margin: 15px 0;
12
- # background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
13
- # border-radius: 10px;
14
- # '>
15
- # <p style='
16
- # font-size: 1.2em;
17
- # margin: 0;
18
- # padding: 0 20px;
19
- # line-height: 1.5;
20
- # background: linear-gradient(90deg, #4299e1, #48bb78);
21
- # -webkit-background-clip: text;
22
- # -webkit-text-fill-color: transparent;
23
- # font-weight: 600;
24
- # '>
25
- # Upload a picture of a dog, and the model will predict its breed and provide detailed information!
26
- # </p>
27
- # <p style='
28
- # font-size: 0.9em;
29
- # color: #666;
30
- # margin-top: 8px;
31
- # padding: 0 20px;
32
- # '>
33
- # Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
34
- # </p>
35
- # </div>
36
- # """)
37
-
38
- # with gr.Row():
39
- # input_image = gr.Image(label="Upload a dog image", type="pil")
40
- # output_image = gr.Image(label="Annotated Image")
41
-
42
- # output = gr.HTML(label="Prediction Results")
43
- # initial_state = gr.State()
44
-
45
- # input_image.change(
46
- # predict_fn,
47
- # inputs=input_image,
48
- # outputs=[output, output_image, initial_state]
49
- # )
50
-
51
- # gr.Examples(
52
- # examples=example_images,
53
- # inputs=input_image
54
- # )
55
-
56
- # return {
57
- # 'input_image': input_image,
58
- # 'output_image': output_image,
59
- # 'output': output,
60
- # 'initial_state': initial_state
61
- # }
62
-
63
-
64
  def create_detection_tab(predict_fn, example_images):
65
- # 首先定義CSS樣式
66
- custom_css = """
67
- /* 標籤樣式 */
68
- .tab-nav {
69
- padding: 0 !important;
70
- margin-bottom: 20px !important;
71
- border-bottom: 1px solid #e2e8f0 !important;
72
- }
73
-
74
- /* 所有標籤的基本樣式 */
75
- .tab-nav button {
76
- padding: 12px 16px !important;
77
- margin: 0 8px !important;
78
- font-size: 1.1em !important;
79
- font-weight: 500 !important;
80
- transition: all 0.3s ease !important;
81
- border-bottom: 2px solid transparent !important;
82
- background: none !important;
83
- position: relative !important;
84
- }
85
-
86
- /* 被選中的標籤樣式 */
87
- .tab-nav button.selected {
88
- color: #4299e1 !important;
89
- border-bottom: 2px solid #4299e1 !important;
90
- background: linear-gradient(to bottom, rgba(66, 153, 225, 0.1), transparent) !important;
91
- }
92
-
93
- /* hover 效果 */
94
- .tab-nav button:hover {
95
- color: #4299e1 !important;
96
- background: rgba(66, 153, 225, 0.05) !important;
97
- }
98
- """
99
-
100
- with gr.Blocks(css=custom_css) as detection_tab:
101
- with gr.TabItem("Breed Detection"):
102
- gr.HTML("""
103
- <div style='
104
- text-align: center;
105
- padding: 20px 0;
106
- margin: 15px 0;
107
- background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
108
- border-radius: 10px;
109
  '>
110
- <p style='
111
- font-size: 1.2em;
112
- margin: 0;
113
- padding: 0 20px;
114
- line-height: 1.5;
115
- background: linear-gradient(90deg, #4299e1, #48bb78);
116
- -webkit-background-clip: text;
117
- -webkit-text-fill-color: transparent;
118
- font-weight: 600;
119
- '>
120
- Upload a picture of a dog, and the model will predict its breed and provide detailed information!
121
- </p>
122
- <p style='
123
- font-size: 0.9em;
124
- color: #666;
125
- margin-top: 8px;
126
- padding: 0 20px;
127
- '>
128
- Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
129
- </p>
130
- </div>
131
- """)
132
-
133
- with gr.Row():
134
- input_image = gr.Image(label="Upload a dog image", type="pil")
135
- output_image = gr.Image(label="Annotated Image")
136
-
137
- output = gr.HTML(label="Prediction Results")
138
- initial_state = gr.State()
139
-
140
- input_image.change(
141
- predict_fn,
142
- inputs=input_image,
143
- outputs=[output, output_image, initial_state]
144
- )
145
-
146
- gr.Examples(
147
- examples=example_images,
148
- inputs=input_image
149
- )
150
 
151
  return {
152
  'input_image': input_image,
 
2
  import gradio as gr
3
  from PIL import Image
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  def create_detection_tab(predict_fn, example_images):
6
+ with gr.TabItem("Breed Detection"):
7
+ gr.HTML("""
8
+ <div style='
9
+ text-align: center;
10
+ padding: 20px 0;
11
+ margin: 15px 0;
12
+ background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
13
+ border-radius: 10px;
14
+ '>
15
+ <p style='
16
+ font-size: 1.2em;
17
+ margin: 0;
18
+ padding: 0 20px;
19
+ line-height: 1.5;
20
+ background: linear-gradient(90deg, #4299e1, #48bb78);
21
+ -webkit-background-clip: text;
22
+ -webkit-text-fill-color: transparent;
23
+ font-weight: 600;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  '>
25
+ Upload a picture of a dog, and the model will predict its breed and provide detailed information!
26
+ </p>
27
+ <p style='
28
+ font-size: 0.9em;
29
+ color: #666;
30
+ margin-top: 8px;
31
+ padding: 0 20px;
32
+ '>
33
+ Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
34
+ </p>
35
+ </div>
36
+ """)
37
+
38
+ with gr.Row():
39
+ input_image = gr.Image(label="Upload a dog image", type="pil")
40
+ output_image = gr.Image(label="Annotated Image")
41
+
42
+ output = gr.HTML(label="Prediction Results")
43
+ initial_state = gr.State()
44
+
45
+ input_image.change(
46
+ predict_fn,
47
+ inputs=input_image,
48
+ outputs=[output, output_image, initial_state]
49
+ )
50
+
51
+ gr.Examples(
52
+ examples=example_images,
53
+ inputs=input_image
54
+ )
 
 
 
 
 
 
 
 
 
 
55
 
56
  return {
57
  'input_image': input_image,