DawnC commited on
Commit
2d5b27a
·
1 Parent(s): 9cf8c06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -44
app.py CHANGED
@@ -168,39 +168,10 @@ async def predict_single_dog(image):
168
  return top1_prob, topk_breeds, topk_probs_percent
169
 
170
 
171
- async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
172
- results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
173
- dogs = []
174
- boxes = []
175
- for box in results.boxes:
176
- if box.cls == 16: # COCO dataset class for dog is 16
177
- xyxy = box.xyxy[0].tolist()
178
- confidence = box.conf.item()
179
- boxes.append((xyxy, confidence))
180
-
181
- if not boxes:
182
- dogs.append((image, 1.0, [0, 0, image.width, image.height]))
183
- else:
184
- nms_boxes = non_max_suppression(boxes, iou_threshold)
185
-
186
- for box, confidence in nms_boxes:
187
- x1, y1, x2, y2 = box
188
- w, h = x2 - x1, y2 - y1
189
- x1 = max(0, x1 - w * 0.05)
190
- y1 = max(0, y1 - h * 0.05)
191
- x2 = min(image.width, x2 + w * 0.05)
192
- y2 = min(image.height, y2 + h * 0.05)
193
- cropped_image = image.crop((x1, y1, x2, y2))
194
- dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
195
-
196
- return dogs
197
-
198
-
199
- # async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
200
  # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
201
  # dogs = []
202
  # boxes = []
203
-
204
  # for box in results.boxes:
205
  # if box.cls == 16: # COCO dataset class for dog is 16
206
  # xyxy = box.xyxy[0].tolist()
@@ -213,28 +184,57 @@ async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
213
  # nms_boxes = non_max_suppression(boxes, iou_threshold)
214
 
215
  # for box, confidence in nms_boxes:
216
- # x1, y1, x2, y2 = [int(coord) for coord in box]
 
 
 
 
 
217
  # cropped_image = image.crop((x1, y1, x2, y2))
218
  # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
219
 
220
- # # 應用過濾器來移除可能的錯誤檢測
221
- # dogs = filter_detections(dogs, (image.width, image.height))
222
-
223
  # return dogs
224
 
225
- # def filter_detections(dogs, image_size):
226
- # filtered_dogs = []
227
- # image_area = image_size[0] * image_size[1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
 
229
- # for dog in dogs:
230
- # _, _, box = dog
231
- # dog_area = (box[2] - box[0]) * (box[3] - box[1])
232
- # area_ratio = dog_area / image_area
233
 
234
- # if 0.01 < area_ratio < 0.9: # 過濾掉太小或太大的檢測框
235
- # filtered_dogs.append(dog)
236
 
237
- # return filtered_dogs
238
 
239
 
240
  def non_max_suppression(boxes, iou_threshold):
 
168
  return top1_prob, topk_breeds, topk_probs_percent
169
 
170
 
171
+ # async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
173
  # dogs = []
174
  # boxes = []
 
175
  # for box in results.boxes:
176
  # if box.cls == 16: # COCO dataset class for dog is 16
177
  # xyxy = box.xyxy[0].tolist()
 
184
  # nms_boxes = non_max_suppression(boxes, iou_threshold)
185
 
186
  # for box, confidence in nms_boxes:
187
+ # x1, y1, x2, y2 = box
188
+ # w, h = x2 - x1, y2 - y1
189
+ # x1 = max(0, x1 - w * 0.05)
190
+ # y1 = max(0, y1 - h * 0.05)
191
+ # x2 = min(image.width, x2 + w * 0.05)
192
+ # y2 = min(image.height, y2 + h * 0.05)
193
  # cropped_image = image.crop((x1, y1, x2, y2))
194
  # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
195
 
 
 
 
196
  # return dogs
197
 
198
+
199
+ async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
200
+ results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
201
+ dogs = []
202
+ boxes = []
203
+
204
+ for box in results.boxes:
205
+ if box.cls == 16: # COCO dataset class for dog is 16
206
+ xyxy = box.xyxy[0].tolist()
207
+ confidence = box.conf.item()
208
+ boxes.append((xyxy, confidence))
209
+
210
+ if not boxes:
211
+ dogs.append((image, 1.0, [0, 0, image.width, image.height]))
212
+ else:
213
+ nms_boxes = non_max_suppression(boxes, iou_threshold)
214
+
215
+ for box, confidence in nms_boxes:
216
+ x1, y1, x2, y2 = [int(coord) for coord in box]
217
+ cropped_image = image.crop((x1, y1, x2, y2))
218
+ dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
219
+
220
+ # 應用過濾器來移除可能的錯誤檢測
221
+ dogs = filter_detections(dogs, (image.width, image.height))
222
+
223
+ return dogs
224
+
225
+ def filter_detections(dogs, image_size):
226
+ filtered_dogs = []
227
+ image_area = image_size[0] * image_size[1]
228
 
229
+ for dog in dogs:
230
+ _, _, box = dog
231
+ dog_area = (box[2] - box[0]) * (box[3] - box[1])
232
+ area_ratio = dog_area / image_area
233
 
234
+ if 0.01 < area_ratio < 0.9: # 過濾掉太小或太大的檢測框
235
+ filtered_dogs.append(dog)
236
 
237
+ return filtered_dogs
238
 
239
 
240
  def non_max_suppression(boxes, iou_threshold):