Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -283,21 +283,32 @@ def _predict_single_dog(image):
|
|
283 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
284 |
return top1_prob, topk_breeds, topk_probs_percent
|
285 |
|
286 |
-
async def detect_multiple_dogs(image, conf_threshold=0.3):
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
def _detect_multiple_dogs(image, conf_threshold):
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
dogs = []
|
293 |
-
for
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
300 |
-
dogs.append((cropped_image, confidence, xyxy))
|
301 |
return dogs
|
302 |
|
303 |
|
@@ -421,10 +432,11 @@ async def predict(image):
|
|
421 |
if isinstance(image, np.ndarray):
|
422 |
image = Image.fromarray(image)
|
423 |
|
424 |
-
#
|
425 |
-
dogs = await detect_multiple_dogs(image, conf_threshold=0.
|
426 |
-
|
427 |
-
|
|
|
428 |
return await process_single_dog(image)
|
429 |
|
430 |
# 多狗情境
|
@@ -461,9 +473,9 @@ async def predict(image):
|
|
461 |
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
462 |
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
463 |
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
464 |
-
gr.update(visible=
|
465 |
else:
|
466 |
-
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=
|
467 |
|
468 |
except Exception as e:
|
469 |
return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
@@ -495,7 +507,7 @@ async def process_single_dog(image):
|
|
495 |
|
496 |
def show_details(choice, previous_output):
|
497 |
if not choice:
|
498 |
-
return previous_output, gr.update(visible=
|
499 |
|
500 |
try:
|
501 |
breed = choice.split("More about ")[-1]
|
|
|
283 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
284 |
return top1_prob, topk_breeds, topk_probs_percent
|
285 |
|
286 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.3):
|
287 |
+
# # 調整 YOLO 模型的置信度閾值
|
288 |
+
# return await asyncio.to_thread(_detect_multiple_dogs, image, conf_threshold)
|
289 |
+
|
290 |
+
# def _detect_multiple_dogs(image, conf_threshold):
|
291 |
+
# results = model_yolo(image, conf=conf_threshold)
|
292 |
+
# dogs = []
|
293 |
+
# for result in results:
|
294 |
+
# for box in result.boxes:
|
295 |
+
# if box.cls == 16: # COCO 資料集中狗的類別是 16
|
296 |
+
# xyxy = box.xyxy[0].tolist()
|
297 |
+
# confidence = box.conf.item()
|
298 |
+
# if confidence >= conf_threshold: # 只保留置信度高於閾值的框
|
299 |
+
# cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
300 |
+
# dogs.append((cropped_image, confidence, xyxy))
|
301 |
+
# return dogs
|
302 |
+
|
303 |
+
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5):
|
304 |
+
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
305 |
dogs = []
|
306 |
+
for box in results.boxes:
|
307 |
+
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
308 |
+
xyxy = box.xyxy[0].tolist()
|
309 |
+
confidence = box.conf.item()
|
310 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
311 |
+
dogs.append((cropped_image, confidence, xyxy))
|
|
|
|
|
312 |
return dogs
|
313 |
|
314 |
|
|
|
432 |
if isinstance(image, np.ndarray):
|
433 |
image = Image.fromarray(image)
|
434 |
|
435 |
+
# 嘗試檢測多隻狗,使用較高的閾值以避免錯誤檢測
|
436 |
+
dogs = await detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5)
|
437 |
+
|
438 |
+
# 如果只檢測到一隻狗,使用單狗處理邏輯
|
439 |
+
if len(dogs) <= 1:
|
440 |
return await process_single_dog(image)
|
441 |
|
442 |
# 多狗情境
|
|
|
473 |
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
474 |
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
475 |
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
476 |
+
gr.update(visible=True))
|
477 |
else:
|
478 |
+
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
479 |
|
480 |
except Exception as e:
|
481 |
return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
507 |
|
508 |
def show_details(choice, previous_output):
|
509 |
if not choice:
|
510 |
+
return previous_output, gr.update(visible=True)
|
511 |
|
512 |
try:
|
513 |
breed = choice.split("More about ")[-1]
|