DawnC commited on
Commit
4700246
·
1 Parent(s): 1274075

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -11
app.py CHANGED
@@ -10,6 +10,7 @@ from PIL import Image, ImageDraw, ImageFont
10
  from data_manager import get_dog_description
11
  from urllib.parse import quote
12
  from ultralytics import YOLO
 
13
 
14
 
15
  # 下載YOLOv8預訓練模型
@@ -270,7 +271,19 @@ Please refer to the AKC's terms of use and privacy policy.*
270
  """
271
  return formatted_description
272
 
273
- def predict_single_dog(image):
 
 
 
 
 
 
 
 
 
 
 
 
274
  image_tensor = preprocess_image(image)
275
  with torch.no_grad():
276
  output = model(image_tensor)
@@ -282,7 +295,7 @@ def predict_single_dog(image):
282
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
283
  return top1_prob, topk_breeds, topk_probs_percent
284
 
285
- def detect_multiple_dogs(image):
286
  try:
287
  results = model_yolo(image)
288
  dogs = []
@@ -298,7 +311,7 @@ def detect_multiple_dogs(image):
298
  print(f"Error in detect_multiple_dogs: {e}")
299
  return []
300
 
301
- def predict(image):
302
  if image is None:
303
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
304
 
@@ -306,13 +319,11 @@ def predict(image):
306
  if isinstance(image, np.ndarray):
307
  image = Image.fromarray(image)
308
 
309
- # Always start with single dog prediction
310
- top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(image)
311
-
312
- # Check if we need to use YOLO for multiple dogs
313
- dogs = detect_multiple_dogs(image)
314
 
315
- if len(dogs) <= 1: # Single dog or no dog detected
 
316
  breed = topk_breeds[0]
317
  description = get_dog_description(breed)
318
  formatted_description = format_description(description, breed)
@@ -333,7 +344,7 @@ Click on a button below to view more information about each breed.
333
  else:
334
  return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
335
 
336
- # Multiple dogs detected, process each dog
337
  explanations = []
338
  visible_buttons = []
339
  annotated_image = image.copy()
@@ -341,7 +352,7 @@ Click on a button below to view more information about each breed.
341
  font = ImageFont.load_default()
342
 
343
  for i, (cropped_image, _, box) in enumerate(dogs, 1):
344
- top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(cropped_image)
345
 
346
  draw.rectangle(box, outline="red", width=3)
347
  draw.text((box[0], box[1]), f"Dog {i}", fill="red", font=font)
 
10
  from data_manager import get_dog_description
11
  from urllib.parse import quote
12
  from ultralytics import YOLO
13
+ import asyncio
14
 
15
 
16
  # 下載YOLOv8預訓練模型
 
271
  """
272
  return formatted_description
273
 
274
+ # 全局變量,用於存儲加載的模型
275
+ model = None
276
+ model_yolo = None
277
+
278
+ def load_models():
279
+ global model, model_yolo
280
+ model = # 加載您的品種分類模型
281
+ model_yolo = YOLO('yolov8n.pt')
282
+
283
+ # 在應用啟動時加載模型
284
+ load_models()
285
+
286
+ async def predict_single_dog(image):
287
  image_tensor = preprocess_image(image)
288
  with torch.no_grad():
289
  output = model(image_tensor)
 
295
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
296
  return top1_prob, topk_breeds, topk_probs_percent
297
 
298
+ async def detect_multiple_dogs(image):
299
  try:
300
  results = model_yolo(image)
301
  dogs = []
 
311
  print(f"Error in detect_multiple_dogs: {e}")
312
  return []
313
 
314
+ async def predict(image):
315
  if image is None:
316
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
317
 
 
319
  if isinstance(image, np.ndarray):
320
  image = Image.fromarray(image)
321
 
322
+ # 快速檢查是否有多個狗
323
+ dogs = await detect_multiple_dogs(image)
 
 
 
324
 
325
+ if len(dogs) <= 1: # 單狗或無狗情況
326
+ top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
327
  breed = topk_breeds[0]
328
  description = get_dog_description(breed)
329
  formatted_description = format_description(description, breed)
 
344
  else:
345
  return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
346
 
347
+ # 多狗情況
348
  explanations = []
349
  visible_buttons = []
350
  annotated_image = image.copy()
 
352
  font = ImageFont.load_default()
353
 
354
  for i, (cropped_image, _, box) in enumerate(dogs, 1):
355
+ top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
356
 
357
  draw.rectangle(box, outline="red", width=3)
358
  draw.text((box[0], box[1]), f"Dog {i}", fill="red", font=font)