Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +951 -243
scoring_calculation_system.py
CHANGED
@@ -29,103 +29,259 @@ class UserPreferences:
|
|
29 |
self.barking_acceptance = self.noise_tolerance
|
30 |
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
@staticmethod
|
33 |
-
def calculate_breed_bonus(breed_info: dict, user_prefs:
|
34 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
bonus = 0.0
|
36 |
temperament = breed_info.get('Temperament', '').lower()
|
37 |
|
38 |
-
#
|
39 |
try:
|
40 |
lifespan = breed_info.get('Lifespan', '10-12 years')
|
41 |
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
except:
|
45 |
pass
|
46 |
|
47 |
-
#
|
48 |
positive_traits = {
|
49 |
-
'friendly': 0.
|
50 |
-
'gentle': 0.
|
51 |
-
'patient': 0.
|
52 |
-
'intelligent': 0.
|
53 |
-
'adaptable': 0.
|
54 |
-
'affectionate': 0.
|
55 |
-
'easy-going': 0.
|
56 |
-
'calm': 0.
|
57 |
}
|
58 |
|
59 |
negative_traits = {
|
60 |
-
'aggressive': -0.
|
61 |
-
'stubborn': -0.
|
62 |
-
'dominant': -0.
|
63 |
-
'aloof': -0.
|
64 |
-
'nervous': -0.
|
65 |
-
'protective': -0.
|
66 |
}
|
67 |
|
68 |
-
|
69 |
-
personality_score
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
#
|
73 |
adaptability_bonus = 0.0
|
74 |
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
|
75 |
-
adaptability_bonus += 0.
|
|
|
|
|
76 |
if 'adaptable' in temperament or 'versatile' in temperament:
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
#
|
81 |
if user_prefs.has_children:
|
82 |
family_traits = {
|
83 |
-
'good with children': 0.
|
84 |
-
'patient': 0.
|
85 |
-
'gentle': 0.
|
86 |
-
'tolerant': 0.
|
87 |
-
'playful': 0.
|
88 |
}
|
|
|
89 |
unfriendly_traits = {
|
90 |
-
'aggressive': -0.
|
91 |
-
'nervous': -0.
|
92 |
-
'protective': -0.
|
93 |
-
'territorial': -0.
|
94 |
}
|
95 |
|
96 |
-
#
|
97 |
age_adjustments = {
|
98 |
-
'toddler': {
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
}
|
102 |
|
103 |
adj = age_adjustments.get(user_prefs.children_age,
|
104 |
{'bonus_mult': 1.0, 'penalty_mult': 1.0})
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
bonus += min(0.
|
112 |
-
|
113 |
-
|
114 |
-
# 5. 專門技能加分(最高0.1)
|
115 |
-
skill_bonus = 0.0
|
116 |
-
special_abilities = {
|
117 |
-
'working': 0.03,
|
118 |
-
'herding': 0.03,
|
119 |
-
'hunting': 0.03,
|
120 |
-
'tracking': 0.03,
|
121 |
-
'agility': 0.02
|
122 |
-
}
|
123 |
-
for ability, value in special_abilities.items():
|
124 |
-
if ability in temperament.lower():
|
125 |
-
skill_bonus += value
|
126 |
-
bonus += min(0.1, skill_bonus)
|
127 |
|
128 |
-
|
|
|
129 |
|
130 |
|
131 |
@staticmethod
|
@@ -216,36 +372,105 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
216 |
print("Missing Size information")
|
217 |
raise KeyError("Size information missing")
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
220 |
-
|
221 |
-
# 基礎空間需求矩陣
|
222 |
base_scores = {
|
223 |
-
"Small": {
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
}
|
228 |
|
229 |
# 取得基礎分數
|
230 |
base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
231 |
|
232 |
-
#
|
233 |
exercise_adjustments = {
|
234 |
-
"Very High":
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
}
|
239 |
|
240 |
-
|
|
|
|
|
241 |
|
242 |
-
#
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
def calculate_exercise_score(breed_needs: str, user_time: int) -> float:
|
251 |
"""運動需求計算"""
|
@@ -269,29 +494,160 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
269 |
else:
|
270 |
return max(0.3, 0.8 * (user_time / breed_need['min']))
|
271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
273 |
-
"""
|
274 |
-
|
|
|
|
|
|
|
275 |
base_scores = {
|
276 |
-
"High": {
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
}
|
280 |
-
|
281 |
# 取得基礎分數
|
282 |
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
|
283 |
-
|
284 |
-
#
|
285 |
size_adjustments = {
|
286 |
-
"
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
}
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
|
297 |
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
@@ -403,24 +759,29 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
403 |
|
404 |
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
405 |
"""
|
406 |
-
|
|
|
|
|
|
|
|
|
|
|
407 |
"""
|
408 |
-
# 基礎分數矩陣 -
|
409 |
base_scores = {
|
410 |
"High": {
|
411 |
-
"beginner": 0.
|
412 |
-
"intermediate": 0.
|
413 |
-
"advanced": 1.0
|
414 |
},
|
415 |
"Moderate": {
|
416 |
-
"beginner": 0.
|
417 |
-
"intermediate": 0.
|
418 |
-
"advanced": 1.0
|
419 |
},
|
420 |
"Low": {
|
421 |
-
"beginner": 0.
|
422 |
-
"intermediate": 0.
|
423 |
-
"advanced": 1.0
|
424 |
}
|
425 |
}
|
426 |
|
@@ -430,29 +791,31 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
430 |
temperament_lower = temperament.lower()
|
431 |
temperament_adjustments = 0.0
|
432 |
|
|
|
433 |
if user_experience == "beginner":
|
434 |
-
#
|
435 |
difficult_traits = {
|
436 |
-
'stubborn': -0.
|
437 |
-
'independent': -0.
|
438 |
-
'dominant': -0.
|
439 |
-
'strong-willed': -0.
|
440 |
-
'protective': -0.
|
441 |
-
'aloof': -0.15,
|
442 |
-
'energetic': -0.
|
|
|
443 |
}
|
444 |
|
445 |
-
#
|
446 |
easy_traits = {
|
447 |
-
'gentle': 0.
|
448 |
-
'friendly': 0.
|
449 |
-
'eager to please': 0.
|
450 |
-
'patient': 0.
|
451 |
-
'adaptable': 0.
|
452 |
-
'calm': 0.
|
453 |
}
|
454 |
|
455 |
-
#
|
456 |
for trait, penalty in difficult_traits.items():
|
457 |
if trait in temperament_lower:
|
458 |
temperament_adjustments += penalty
|
@@ -461,19 +824,23 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
461 |
if trait in temperament_lower:
|
462 |
temperament_adjustments += bonus
|
463 |
|
464 |
-
#
|
465 |
-
if
|
466 |
-
temperament_adjustments -= 0.20
|
|
|
|
|
|
|
|
|
467 |
|
468 |
elif user_experience == "intermediate":
|
469 |
-
#
|
470 |
moderate_traits = {
|
471 |
-
'
|
472 |
-
'
|
473 |
-
'
|
474 |
-
'
|
475 |
-
'
|
476 |
-
'protective': -0.
|
477 |
}
|
478 |
|
479 |
for trait, adjustment in moderate_traits.items():
|
@@ -483,140 +850,447 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
483 |
else: # advanced
|
484 |
# 資深玩家能夠應對挑戰性特徵
|
485 |
advanced_traits = {
|
486 |
-
'stubborn': 0.
|
487 |
-
'independent': 0.
|
488 |
-
'intelligent': 0.
|
489 |
-
'protective': 0.
|
490 |
-
'strong-willed': 0.
|
491 |
}
|
492 |
|
493 |
for trait, bonus in advanced_traits.items():
|
494 |
if trait in temperament_lower:
|
495 |
temperament_adjustments += bonus
|
496 |
|
497 |
-
#
|
498 |
-
final_score = max(0.
|
|
|
499 |
return final_score
|
500 |
|
501 |
|
502 |
-
def calculate_health_score(breed_name: str) -> float:
|
503 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
if breed_name not in breed_health_info:
|
505 |
return 0.5
|
506 |
-
|
507 |
health_notes = breed_health_info[breed_name]['health_notes'].lower()
|
508 |
|
509 |
-
#
|
510 |
-
severe_conditions =
|
511 |
-
'hip dysplasia',
|
512 |
-
'heart disease',
|
513 |
-
'progressive retinal atrophy',
|
514 |
-
'bloat',
|
515 |
-
'epilepsy',
|
516 |
-
'degenerative myelopathy',
|
517 |
-
'von willebrand disease'
|
518 |
-
|
519 |
-
|
520 |
-
#
|
521 |
-
moderate_conditions =
|
522 |
-
'allergies',
|
523 |
-
'eye problems',
|
524 |
-
'joint problems',
|
525 |
-
'hypothyroidism',
|
526 |
-
'ear infections',
|
527 |
-
'skin issues'
|
528 |
-
|
529 |
-
|
530 |
-
#
|
531 |
-
minor_conditions =
|
532 |
-
'dental issues',
|
533 |
-
'weight gain tendency',
|
534 |
-
'minor allergies',
|
535 |
-
'seasonal allergies'
|
536 |
-
|
537 |
-
|
538 |
# 計算基礎健康分數
|
539 |
health_score = 1.0
|
540 |
|
541 |
-
#
|
542 |
-
|
543 |
-
|
544 |
-
|
|
|
|
|
545 |
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
try:
|
552 |
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
|
553 |
years = float(lifespan.split('-')[0])
|
554 |
if years < 8:
|
555 |
-
health_score *= 0.
|
|
|
|
|
556 |
elif years > 13:
|
557 |
-
health_score *= 1.1
|
558 |
except:
|
559 |
pass
|
560 |
-
|
561 |
# 特殊健康優勢
|
562 |
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
|
|
|
|
|
563 |
health_score *= 1.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
|
565 |
-
|
|
|
|
|
566 |
|
567 |
-
|
568 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
569 |
if breed_name not in breed_noise_info:
|
570 |
return 0.5
|
571 |
-
|
572 |
noise_info = breed_noise_info[breed_name]
|
573 |
noise_level = noise_info['noise_level'].lower()
|
574 |
noise_notes = noise_info['noise_notes'].lower()
|
575 |
-
|
576 |
-
#
|
577 |
base_scores = {
|
578 |
-
'low': {
|
579 |
-
|
580 |
-
|
581 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
582 |
}
|
583 |
-
|
584 |
-
#
|
585 |
-
base_score = base_scores.get(noise_level, {'low': 0.
|
586 |
-
|
587 |
-
#
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
if trigger in noise_notes:
|
599 |
-
|
600 |
-
|
601 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
602 |
trainability_bonus = 0
|
603 |
if 'responds well to training' in noise_notes:
|
604 |
-
trainability_bonus = 0.
|
605 |
elif 'can be trained' in noise_notes:
|
606 |
-
trainability_bonus = 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
607 |
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
614 |
|
615 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
|
617 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
-
# 計算所有基礎分數
|
620 |
scores = {
|
621 |
'space': calculate_space_score(
|
622 |
breed_info['Size'],
|
@@ -642,9 +1316,8 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
642 |
'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
643 |
}
|
644 |
|
645 |
-
|
646 |
-
|
647 |
-
weights = {
|
648 |
'space': 0.28,
|
649 |
'exercise': 0.18,
|
650 |
'grooming': 0.12,
|
@@ -653,40 +1326,75 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
653 |
'noise': 0.08
|
654 |
}
|
655 |
|
656 |
-
#
|
657 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
658 |
|
|
|
|
|
|
|
|
|
659 |
def amplify_score(score):
|
660 |
"""
|
661 |
-
|
|
|
|
|
|
|
|
|
|
|
662 |
"""
|
663 |
-
#
|
664 |
-
adjusted = (score - 0.
|
665 |
|
666 |
-
#
|
667 |
-
amplified = pow(adjusted,
|
668 |
|
669 |
-
#
|
670 |
-
if
|
671 |
-
#
|
672 |
-
|
|
|
673 |
|
674 |
-
#
|
675 |
-
final_score = max(0.
|
676 |
|
677 |
# 四捨五入到小數點後第三位
|
678 |
return round(final_score, 3)
|
679 |
-
|
|
|
680 |
final_score = amplify_score(weighted_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
|
682 |
-
#
|
683 |
scores = {k: round(v, 4) for k, v in scores.items()}
|
684 |
scores['overall'] = round(final_score, 4)
|
685 |
-
|
686 |
return scores
|
687 |
|
688 |
except Exception as e:
|
689 |
print(f"Error details: {str(e)}")
|
690 |
print(f"breed_info: {breed_info}")
|
691 |
-
# print(f"Error in calculate_compatibility_score: {str(e)}")
|
692 |
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|
|
|
29 |
self.barking_acceptance = self.noise_tolerance
|
30 |
|
31 |
|
32 |
+
# @staticmethod
|
33 |
+
# def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
|
34 |
+
# """計算品種額外加分"""
|
35 |
+
# bonus = 0.0
|
36 |
+
# temperament = breed_info.get('Temperament', '').lower()
|
37 |
+
|
38 |
+
# # 1. 壽命加分(最高0.05)
|
39 |
+
# try:
|
40 |
+
# lifespan = breed_info.get('Lifespan', '10-12 years')
|
41 |
+
# years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
|
42 |
+
# longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
|
43 |
+
# bonus += longevity_bonus
|
44 |
+
# except:
|
45 |
+
# pass
|
46 |
+
|
47 |
+
# # 2. 性格特徵加分(最高0.15)
|
48 |
+
# positive_traits = {
|
49 |
+
# 'friendly': 0.05,
|
50 |
+
# 'gentle': 0.05,
|
51 |
+
# 'patient': 0.05,
|
52 |
+
# 'intelligent': 0.04,
|
53 |
+
# 'adaptable': 0.04,
|
54 |
+
# 'affectionate': 0.04,
|
55 |
+
# 'easy-going': 0.03,
|
56 |
+
# 'calm': 0.03
|
57 |
+
# }
|
58 |
+
|
59 |
+
# negative_traits = {
|
60 |
+
# 'aggressive': -0.08,
|
61 |
+
# 'stubborn': -0.06,
|
62 |
+
# 'dominant': -0.06,
|
63 |
+
# 'aloof': -0.04,
|
64 |
+
# 'nervous': -0.05,
|
65 |
+
# 'protective': -0.04
|
66 |
+
# }
|
67 |
+
|
68 |
+
# personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
|
69 |
+
# personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
|
70 |
+
# bonus += max(-0.15, min(0.15, personality_score))
|
71 |
+
|
72 |
+
# # 3. 適應性加分(最高0.1)
|
73 |
+
# adaptability_bonus = 0.0
|
74 |
+
# if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
|
75 |
+
# adaptability_bonus += 0.05
|
76 |
+
# if 'adaptable' in temperament or 'versatile' in temperament:
|
77 |
+
# adaptability_bonus += 0.05
|
78 |
+
# bonus += min(0.1, adaptability_bonus)
|
79 |
+
|
80 |
+
# # 4. 家庭相容性(最高0.1)
|
81 |
+
# if user_prefs.has_children:
|
82 |
+
# family_traits = {
|
83 |
+
# 'good with children': 0.06,
|
84 |
+
# 'patient': 0.05,
|
85 |
+
# 'gentle': 0.05,
|
86 |
+
# 'tolerant': 0.04,
|
87 |
+
# 'playful': 0.03
|
88 |
+
# }
|
89 |
+
# unfriendly_traits = {
|
90 |
+
# 'aggressive': -0.08,
|
91 |
+
# 'nervous': -0.07,
|
92 |
+
# 'protective': -0.06,
|
93 |
+
# 'territorial': -0.05
|
94 |
+
# }
|
95 |
+
|
96 |
+
# # 年齡評估這樣能更細緻
|
97 |
+
# age_adjustments = {
|
98 |
+
# 'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
|
99 |
+
# 'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
|
100 |
+
# 'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
|
101 |
+
# }
|
102 |
+
|
103 |
+
# adj = age_adjustments.get(user_prefs.children_age,
|
104 |
+
# {'bonus_mult': 1.0, 'penalty_mult': 1.0})
|
105 |
+
|
106 |
+
# family_bonus = sum(value for trait, value in family_traits.items()
|
107 |
+
# if trait in temperament) * adj['bonus_mult']
|
108 |
+
# family_penalty = sum(value for trait, value in unfriendly_traits.items()
|
109 |
+
# if trait in temperament) * adj['penalty_mult']
|
110 |
+
|
111 |
+
# bonus += min(0.15, max(-0.2, family_bonus + family_penalty))
|
112 |
+
|
113 |
+
|
114 |
+
# # 5. 專門技能加分(最高0.1)
|
115 |
+
# skill_bonus = 0.0
|
116 |
+
# special_abilities = {
|
117 |
+
# 'working': 0.03,
|
118 |
+
# 'herding': 0.03,
|
119 |
+
# 'hunting': 0.03,
|
120 |
+
# 'tracking': 0.03,
|
121 |
+
# 'agility': 0.02
|
122 |
+
# }
|
123 |
+
# for ability, value in special_abilities.items():
|
124 |
+
# if ability in temperament.lower():
|
125 |
+
# skill_bonus += value
|
126 |
+
# bonus += min(0.1, skill_bonus)
|
127 |
+
|
128 |
+
# return min(0.5, max(-0.25, bonus))
|
129 |
+
|
130 |
+
|
131 |
@staticmethod
|
132 |
+
def calculate_breed_bonus(breed_info: dict, user_prefs: UserPreferences) -> float:
|
133 |
+
"""
|
134 |
+
計算品種的額外加分,評估品種的特殊特徵對使用者需求的適配性。
|
135 |
+
|
136 |
+
這個函數考慮四個主要面向:
|
137 |
+
1. 壽命評估:考慮飼養的長期承諾
|
138 |
+
2. 性格特徵評估:評估品種性格與使用者需求的匹配度
|
139 |
+
3. 環境適應性:評估品種在特定生活環境中的表現
|
140 |
+
4. 家庭相容性:特別關注品種與家庭成員的互動
|
141 |
+
"""
|
142 |
bonus = 0.0
|
143 |
temperament = breed_info.get('Temperament', '').lower()
|
144 |
|
145 |
+
# 壽命評估 - 重新設計以反映更實際的考量
|
146 |
try:
|
147 |
lifespan = breed_info.get('Lifespan', '10-12 years')
|
148 |
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
|
149 |
+
avg_years = float(years[0])
|
150 |
+
|
151 |
+
# 根據壽命長短給予不同程度的獎勵或懲罰
|
152 |
+
if avg_years < 8:
|
153 |
+
bonus -= 0.08 # 短壽命可能帶來情感負擔
|
154 |
+
elif avg_years < 10:
|
155 |
+
bonus -= 0.04 # 稍短壽命輕微降低評分
|
156 |
+
elif avg_years > 13:
|
157 |
+
bonus += 0.06 # 長壽命適度加分
|
158 |
+
elif avg_years > 15:
|
159 |
+
bonus += 0.08 # 特別長壽的品種獲得更多加分
|
160 |
except:
|
161 |
pass
|
162 |
|
163 |
+
# 性格特徵評估 - 擴充並細化評分標準
|
164 |
positive_traits = {
|
165 |
+
'friendly': 0.08, # 提高友善性的重要性
|
166 |
+
'gentle': 0.08, # 溫和性格更受歡迎
|
167 |
+
'patient': 0.07, # 耐心是重要特質
|
168 |
+
'intelligent': 0.06, # 聰明但不過分重要
|
169 |
+
'adaptable': 0.06, # 適應性佳的特質
|
170 |
+
'affectionate': 0.06, # 親密性很重要
|
171 |
+
'easy-going': 0.05, # 容易相處的性格
|
172 |
+
'calm': 0.05 # 冷靜的特質
|
173 |
}
|
174 |
|
175 |
negative_traits = {
|
176 |
+
'aggressive': -0.15, # 嚴重懲罰攻擊性
|
177 |
+
'stubborn': -0.10, # 固執性格不易處理
|
178 |
+
'dominant': -0.10, # 支配性可能造成問題
|
179 |
+
'aloof': -0.08, # 冷漠性格影響互動
|
180 |
+
'nervous': -0.08, # 緊張性格需要更多關注
|
181 |
+
'protective': -0.06 # 過度保護可能有風險
|
182 |
}
|
183 |
|
184 |
+
# 性格評分計算 - 加入累積效應
|
185 |
+
personality_score = 0
|
186 |
+
positive_count = 0
|
187 |
+
negative_count = 0
|
188 |
+
|
189 |
+
for trait, value in positive_traits.items():
|
190 |
+
if trait in temperament:
|
191 |
+
personality_score += value
|
192 |
+
positive_count += 1
|
193 |
+
|
194 |
+
for trait, value in negative_traits.items():
|
195 |
+
if trait in temperament:
|
196 |
+
personality_score += value
|
197 |
+
negative_count += 1
|
198 |
+
|
199 |
+
# 多重特徵的累積效應
|
200 |
+
if positive_count > 2:
|
201 |
+
personality_score *= (1 + (positive_count - 2) * 0.1)
|
202 |
+
if negative_count > 1:
|
203 |
+
personality_score *= (1 - (negative_count - 1) * 0.15)
|
204 |
+
|
205 |
+
bonus += max(-0.25, min(0.25, personality_score))
|
206 |
|
207 |
+
# 適應性評估 - 根據具體環境給予更細緻的評分
|
208 |
adaptability_bonus = 0.0
|
209 |
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
|
210 |
+
adaptability_bonus += 0.08 # 小型犬更適合公寓
|
211 |
+
|
212 |
+
# 環境適應性評估
|
213 |
if 'adaptable' in temperament or 'versatile' in temperament:
|
214 |
+
if user_prefs.living_space == "apartment":
|
215 |
+
adaptability_bonus += 0.10 # 適應性在公寓環境更重要
|
216 |
+
else:
|
217 |
+
adaptability_bonus += 0.05 # 其他環境仍有加分
|
218 |
+
|
219 |
+
# 氣候適應性
|
220 |
+
description = breed_info.get('Description', '').lower()
|
221 |
+
climate = user_prefs.climate
|
222 |
+
if climate == 'hot':
|
223 |
+
if 'heat tolerant' in description or 'warm climate' in description:
|
224 |
+
adaptability_bonus += 0.08
|
225 |
+
elif 'thick coat' in description or 'cold climate' in description:
|
226 |
+
adaptability_bonus -= 0.10
|
227 |
+
elif climate == 'cold':
|
228 |
+
if 'thick coat' in description or 'cold climate' in description:
|
229 |
+
adaptability_bonus += 0.08
|
230 |
+
elif 'heat tolerant' in description or 'short coat' in description:
|
231 |
+
adaptability_bonus -= 0.10
|
232 |
+
|
233 |
+
bonus += min(0.15, adaptability_bonus)
|
234 |
|
235 |
+
# 家庭相容性評估 - 特別關注有孩童的家庭
|
236 |
if user_prefs.has_children:
|
237 |
family_traits = {
|
238 |
+
'good with children': 0.12, # 提高與孩童相處的重要性
|
239 |
+
'patient': 0.10,
|
240 |
+
'gentle': 0.10,
|
241 |
+
'tolerant': 0.08,
|
242 |
+
'playful': 0.06
|
243 |
}
|
244 |
+
|
245 |
unfriendly_traits = {
|
246 |
+
'aggressive': -0.15, # 加重攻擊性的懲罰
|
247 |
+
'nervous': -0.12, # 緊張特質可能有風險
|
248 |
+
'protective': -0.10, # 過度保護性需要注意
|
249 |
+
'territorial': -0.08 # 地域性可能造成問題
|
250 |
}
|
251 |
|
252 |
+
# 根據孩童年齡調整評分權重
|
253 |
age_adjustments = {
|
254 |
+
'toddler': {
|
255 |
+
'bonus_mult': 0.6, # 降低正面特質的獎勵
|
256 |
+
'penalty_mult': 1.5 # 加重負面特質的懲罰
|
257 |
+
},
|
258 |
+
'school_age': {
|
259 |
+
'bonus_mult': 1.0,
|
260 |
+
'penalty_mult': 1.0
|
261 |
+
},
|
262 |
+
'teenager': {
|
263 |
+
'bonus_mult': 1.2, # 提高正面特質的獎勵
|
264 |
+
'penalty_mult': 0.8 # 降低負面特質的懲罰
|
265 |
+
}
|
266 |
}
|
267 |
|
268 |
adj = age_adjustments.get(user_prefs.children_age,
|
269 |
{'bonus_mult': 1.0, 'penalty_mult': 1.0})
|
270 |
|
271 |
+
# 計算家庭相容性分數
|
272 |
+
family_score = 0
|
273 |
+
for trait, value in family_traits.items():
|
274 |
+
if trait in temperament:
|
275 |
+
family_score += value * adj['bonus_mult']
|
276 |
+
|
277 |
+
for trait, value in unfriendly_traits.items():
|
278 |
+
if trait in temperament:
|
279 |
+
family_score += value * adj['penalty_mult']
|
280 |
|
281 |
+
bonus += min(0.20, max(-0.30, family_score))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
# 確保總體加分在合理範圍內,但允許更大的變化
|
284 |
+
return min(0.5, max(-0.35, bonus))
|
285 |
|
286 |
|
287 |
@staticmethod
|
|
|
372 |
print("Missing Size information")
|
373 |
raise KeyError("Size information missing")
|
374 |
|
375 |
+
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
376 |
+
# """空間分數計算"""
|
377 |
+
# # 基礎空間需求矩陣
|
378 |
+
# base_scores = {
|
379 |
+
# "Small": {"apartment": 0.95, "house_small": 1.0, "house_large": 0.90},
|
380 |
+
# "Medium": {"apartment": 0.60, "house_small": 0.90, "house_large": 1.0},
|
381 |
+
# "Large": {"apartment": 0.30, "house_small": 0.75, "house_large": 1.0},
|
382 |
+
# "Giant": {"apartment": 0.15, "house_small": 0.55, "house_large": 1.0}
|
383 |
+
# }
|
384 |
+
|
385 |
+
# # 取得基礎分數
|
386 |
+
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
387 |
+
|
388 |
+
# # 運動需求調整
|
389 |
+
# exercise_adjustments = {
|
390 |
+
# "Very High": -0.15 if living_space == "apartment" else 0,
|
391 |
+
# "High": -0.10 if living_space == "apartment" else 0,
|
392 |
+
# "Moderate": 0,
|
393 |
+
# "Low": 0.05 if living_space == "apartment" else 0
|
394 |
+
# }
|
395 |
+
|
396 |
+
# adjustments = exercise_adjustments.get(exercise_needs.strip(), 0)
|
397 |
+
|
398 |
+
# # 院子獎勵
|
399 |
+
# if has_yard and size in ["Large", "Giant"]:
|
400 |
+
# adjustments += 0.10
|
401 |
+
# elif has_yard:
|
402 |
+
# adjustments += 0.05
|
403 |
+
|
404 |
+
# return min(1.0, max(0.1, base_score + adjustments))
|
405 |
+
|
406 |
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
407 |
+
# 重新設計基礎分數矩陣
|
|
|
408 |
base_scores = {
|
409 |
+
"Small": {
|
410 |
+
"apartment": 1.0, # 小型犬最適合公寓
|
411 |
+
"house_small": 0.95, # 在大房子反而稍微降分
|
412 |
+
"house_large": 0.85 # 可能浪費空間
|
413 |
+
},
|
414 |
+
"Medium": {
|
415 |
+
"apartment": 0.45, # 中���犬在公寓明顯受限
|
416 |
+
"house_small": 0.85,
|
417 |
+
"house_large": 1.0
|
418 |
+
},
|
419 |
+
"Large": {
|
420 |
+
"apartment": 0.15, # 大型犬在公寓極不適合
|
421 |
+
"house_small": 0.60, # 在小房子仍然受限
|
422 |
+
"house_large": 1.0
|
423 |
+
},
|
424 |
+
"Giant": {
|
425 |
+
"apartment": 0.1, # 更嚴格的限制
|
426 |
+
"house_small": 0.45,
|
427 |
+
"house_large": 1.0
|
428 |
+
}
|
429 |
}
|
430 |
|
431 |
# 取得基礎分數
|
432 |
base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
433 |
|
434 |
+
# 運動需求調整更明顯
|
435 |
exercise_adjustments = {
|
436 |
+
"Very High": {
|
437 |
+
"apartment": -0.25, # 在公寓更嚴重的懲罰
|
438 |
+
"house_small": -0.15,
|
439 |
+
"house_large": -0.05
|
440 |
+
},
|
441 |
+
"High": {
|
442 |
+
"apartment": -0.20,
|
443 |
+
"house_small": -0.10,
|
444 |
+
"house_large": 0
|
445 |
+
},
|
446 |
+
"Moderate": {
|
447 |
+
"apartment": -0.10,
|
448 |
+
"house_small": -0.05,
|
449 |
+
"house_large": 0
|
450 |
+
},
|
451 |
+
"Low": {
|
452 |
+
"apartment": 0.05,
|
453 |
+
"house_small": 0,
|
454 |
+
"house_large": 0
|
455 |
+
}
|
456 |
}
|
457 |
|
458 |
+
# 根據空間類型獲取對應的運動調整
|
459 |
+
adjustment = exercise_adjustments.get(exercise_needs,
|
460 |
+
exercise_adjustments["Moderate"])[living_space]
|
461 |
|
462 |
+
# 院子獎勵也要根據犬種大小調整
|
463 |
+
yard_bonus = 0
|
464 |
+
if has_yard:
|
465 |
+
if size in ["Large", "Giant"]:
|
466 |
+
yard_bonus = 0.20 if living_space != "apartment" else 0.10
|
467 |
+
elif size == "Medium":
|
468 |
+
yard_bonus = 0.15 if living_space != "apartment" else 0.08
|
469 |
+
else:
|
470 |
+
yard_bonus = 0.10 if living_space != "apartment" else 0.05
|
471 |
+
|
472 |
+
final_score = base_score + adjustment + yard_bonus
|
473 |
+
return min(1.0, max(0.1, final_score))
|
474 |
|
475 |
def calculate_exercise_score(breed_needs: str, user_time: int) -> float:
|
476 |
"""運動需求計算"""
|
|
|
494 |
else:
|
495 |
return max(0.3, 0.8 * (user_time / breed_need['min']))
|
496 |
|
497 |
+
# def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
498 |
+
# """美容需求計算"""
|
499 |
+
# # 基礎分數矩陣
|
500 |
+
# base_scores = {
|
501 |
+
# "High": {"low": 0.3, "medium": 0.7, "high": 1.0},
|
502 |
+
# "Moderate": {"low": 0.5, "medium": 0.9, "high": 1.0},
|
503 |
+
# "Low": {"low": 1.0, "medium": 0.95, "high": 0.8}
|
504 |
+
# }
|
505 |
+
|
506 |
+
# # 取得基礎分數
|
507 |
+
# base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
|
508 |
+
|
509 |
+
# # 體型影響調整
|
510 |
+
# size_adjustments = {
|
511 |
+
# "Large": {"low": -0.2, "medium": -0.1, "high": 0},
|
512 |
+
# "Giant": {"low": -0.3, "medium": -0.15, "high": 0},
|
513 |
+
# }
|
514 |
+
|
515 |
+
# if breed_size in size_adjustments:
|
516 |
+
# adjustment = size_adjustments[breed_size].get(user_commitment, 0)
|
517 |
+
# base_score = max(0.2, base_score + adjustment)
|
518 |
+
|
519 |
+
# return base_score
|
520 |
+
|
521 |
+
|
522 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
523 |
+
"""
|
524 |
+
計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。
|
525 |
+
這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。
|
526 |
+
"""
|
527 |
+
# 重新設計基礎分數矩陣,讓美容需求的差異更加明顯
|
528 |
base_scores = {
|
529 |
+
"High": {
|
530 |
+
"low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數
|
531 |
+
"medium": 0.65, # 中等承諾仍有挑戰
|
532 |
+
"high": 1.0 # 高承諾最適合
|
533 |
+
},
|
534 |
+
"Moderate": {
|
535 |
+
"low": 0.45, # 中等需求對低承諾有困難
|
536 |
+
"medium": 0.85, # 較好的匹配
|
537 |
+
"high": 0.95 # 高承諾會有餘力
|
538 |
+
},
|
539 |
+
"Low": {
|
540 |
+
"low": 0.90, # 低需求對低承諾很合適
|
541 |
+
"medium": 0.85, # 略微降低以反映可能過度投入
|
542 |
+
"high": 0.80 # 可能造成資源浪費
|
543 |
+
}
|
544 |
}
|
545 |
+
|
546 |
# 取得基礎分數
|
547 |
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
|
548 |
+
|
549 |
+
# 根據品種大小調整美容工作量
|
550 |
size_adjustments = {
|
551 |
+
"Giant": {
|
552 |
+
"low": -0.35, # 大型犬的美容工作量顯著增加
|
553 |
+
"medium": -0.20,
|
554 |
+
"high": -0.10
|
555 |
+
},
|
556 |
+
"Large": {
|
557 |
+
"low": -0.25,
|
558 |
+
"medium": -0.15,
|
559 |
+
"high": -0.05
|
560 |
+
},
|
561 |
+
"Medium": {
|
562 |
+
"low": -0.15,
|
563 |
+
"medium": -0.10,
|
564 |
+
"high": 0
|
565 |
+
},
|
566 |
+
"Small": {
|
567 |
+
"low": -0.10,
|
568 |
+
"medium": -0.05,
|
569 |
+
"high": 0
|
570 |
+
}
|
571 |
}
|
572 |
+
|
573 |
+
# 應用體型調整
|
574 |
+
size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment]
|
575 |
+
current_score = base_score + size_adjustment
|
576 |
+
|
577 |
+
# 特殊毛髮類型的額外調整
|
578 |
+
def get_coat_adjustment(breed_description: str, commitment: str) -> float:
|
579 |
+
"""
|
580 |
+
評估特殊毛髮類型所需的額外維護工作
|
581 |
+
"""
|
582 |
+
adjustments = 0
|
583 |
|
584 |
+
# 長毛品種需要更多維護
|
585 |
+
if 'long coat' in breed_description.lower():
|
586 |
+
coat_penalties = {
|
587 |
+
'low': -0.20,
|
588 |
+
'medium': -0.15,
|
589 |
+
'high': -0.05
|
590 |
+
}
|
591 |
+
adjustments += coat_penalties[commitment]
|
592 |
+
|
593 |
+
# 雙層毛的品種掉毛量更大
|
594 |
+
if 'double coat' in breed_description.lower():
|
595 |
+
double_coat_penalties = {
|
596 |
+
'low': -0.15,
|
597 |
+
'medium': -0.10,
|
598 |
+
'high': -0.05
|
599 |
+
}
|
600 |
+
adjustments += double_coat_penalties[commitment]
|
601 |
+
|
602 |
+
# 捲毛品種需要定期專業修剪
|
603 |
+
if 'curly' in breed_description.lower():
|
604 |
+
curly_penalties = {
|
605 |
+
'low': -0.15,
|
606 |
+
'medium': -0.10,
|
607 |
+
'high': -0.05
|
608 |
+
}
|
609 |
+
adjustments += curly_penalties[commitment]
|
610 |
+
|
611 |
+
return adjustments
|
612 |
+
|
613 |
+
# 季節性考量
|
614 |
+
def get_seasonal_adjustment(breed_description: str, commitment: str) -> float:
|
615 |
+
"""
|
616 |
+
評估季節性掉毛對美容需求的影響
|
617 |
+
"""
|
618 |
+
if 'seasonal shedding' in breed_description.lower():
|
619 |
+
seasonal_penalties = {
|
620 |
+
'low': -0.15,
|
621 |
+
'medium': -0.10,
|
622 |
+
'high': -0.05
|
623 |
+
}
|
624 |
+
return seasonal_penalties[commitment]
|
625 |
+
return 0
|
626 |
+
|
627 |
+
# 專業美容需求評估
|
628 |
+
def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float:
|
629 |
+
"""
|
630 |
+
評估需要專業美容服務的影響
|
631 |
+
"""
|
632 |
+
if 'professional grooming' in breed_description.lower():
|
633 |
+
grooming_penalties = {
|
634 |
+
'low': -0.20,
|
635 |
+
'medium': -0.15,
|
636 |
+
'high': -0.05
|
637 |
+
}
|
638 |
+
return grooming_penalties[commitment]
|
639 |
+
return 0
|
640 |
+
|
641 |
+
# 應用所有額外調整
|
642 |
+
# 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整
|
643 |
+
coat_adjustment = get_coat_adjustment("", user_commitment)
|
644 |
+
seasonal_adjustment = get_seasonal_adjustment("", user_commitment)
|
645 |
+
professional_adjustment = get_professional_grooming_adjustment("", user_commitment)
|
646 |
+
|
647 |
+
final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment
|
648 |
+
|
649 |
+
# 確保分數在有意義的範圍內,但允許更大的差異
|
650 |
+
return max(0.1, min(1.0, final_score))
|
651 |
|
652 |
|
653 |
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
|
|
759 |
|
760 |
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
761 |
"""
|
762 |
+
計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
|
763 |
+
|
764 |
+
重要改進:
|
765 |
+
1. 擴大基礎分數差異
|
766 |
+
2. 加重困難特徵的懲罰
|
767 |
+
3. 更細緻的品種特性評估
|
768 |
"""
|
769 |
+
# 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
|
770 |
base_scores = {
|
771 |
"High": {
|
772 |
+
"beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦
|
773 |
+
"intermediate": 0.60, # 中級玩家仍需謹慎
|
774 |
+
"advanced": 1.0 # 資深者能完全勝任
|
775 |
},
|
776 |
"Moderate": {
|
777 |
+
"beginner": 0.35, # 適中難度對新手仍具挑戰
|
778 |
+
"intermediate": 0.80, # 中級玩家較適合
|
779 |
+
"advanced": 1.0 # 資深者完全勝任
|
780 |
},
|
781 |
"Low": {
|
782 |
+
"beginner": 0.90, # 新手友善品種
|
783 |
+
"intermediate": 0.95, # 中級玩家幾乎完全勝任
|
784 |
+
"advanced": 1.0 # 資深者完全勝任
|
785 |
}
|
786 |
}
|
787 |
|
|
|
791 |
temperament_lower = temperament.lower()
|
792 |
temperament_adjustments = 0.0
|
793 |
|
794 |
+
# 根據經驗等級設定不同的特徵評估標準
|
795 |
if user_experience == "beginner":
|
796 |
+
# 新手不適合的特徵 - 更嚴格的懲罰
|
797 |
difficult_traits = {
|
798 |
+
'stubborn': -0.30, # 固執性格嚴重影響新手
|
799 |
+
'independent': -0.25, # 獨立性高的品種不適合新手
|
800 |
+
'dominant': -0.25, # 支配性強的品種需要經驗處理
|
801 |
+
'strong-willed': -0.20, # 強勢性格需要技巧管理
|
802 |
+
'protective': -0.20, # 保護性強需要適當訓練
|
803 |
+
'aloof': -0.15, # 冷漠性格需要耐心培養
|
804 |
+
'energetic': -0.15, # 活潑好動需要經驗引導
|
805 |
+
'aggressive': -0.35 # 攻擊傾向極不適合新手
|
806 |
}
|
807 |
|
808 |
+
# 新手友善的特徵 - 適度的獎勵
|
809 |
easy_traits = {
|
810 |
+
'gentle': 0.05, # 溫和性格適合新手
|
811 |
+
'friendly': 0.05, # 友善性格��易相處
|
812 |
+
'eager to please': 0.08, # 願意服從較容易訓練
|
813 |
+
'patient': 0.05, # 耐心的特質有助於建立關係
|
814 |
+
'adaptable': 0.05, # 適應性強較容易照顧
|
815 |
+
'calm': 0.06 # 冷靜的性格較好掌握
|
816 |
}
|
817 |
|
818 |
+
# 計算特徵調整
|
819 |
for trait, penalty in difficult_traits.items():
|
820 |
if trait in temperament_lower:
|
821 |
temperament_adjustments += penalty
|
|
|
824 |
if trait in temperament_lower:
|
825 |
temperament_adjustments += bonus
|
826 |
|
827 |
+
# 品種類型特殊評估
|
828 |
+
if 'terrier' in temperament_lower:
|
829 |
+
temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手
|
830 |
+
elif 'working' in temperament_lower:
|
831 |
+
temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人
|
832 |
+
elif 'guard' in temperament_lower:
|
833 |
+
temperament_adjustments -= 0.25 # 護衛犬需要專業訓練
|
834 |
|
835 |
elif user_experience == "intermediate":
|
836 |
+
# 中級玩家的特徵評估
|
837 |
moderate_traits = {
|
838 |
+
'stubborn': -0.15, # 仍然需要注意,但懲罰較輕
|
839 |
+
'independent': -0.10,
|
840 |
+
'intelligent': 0.08, # 聰明的特質可以好好發揮
|
841 |
+
'athletic': 0.06, # 運動能力可以適當訓練
|
842 |
+
'versatile': 0.07, # 多功能性可以開發
|
843 |
+
'protective': -0.08 # 保護性仍需注意
|
844 |
}
|
845 |
|
846 |
for trait, adjustment in moderate_traits.items():
|
|
|
850 |
else: # advanced
|
851 |
# 資深玩家能夠應對挑戰性特徵
|
852 |
advanced_traits = {
|
853 |
+
'stubborn': 0.05, # 困難特徵反而成為優勢
|
854 |
+
'independent': 0.05,
|
855 |
+
'intelligent': 0.10,
|
856 |
+
'protective': 0.05,
|
857 |
+
'strong-willed': 0.05
|
858 |
}
|
859 |
|
860 |
for trait, bonus in advanced_traits.items():
|
861 |
if trait in temperament_lower:
|
862 |
temperament_adjustments += bonus
|
863 |
|
864 |
+
# 確保最終分數範圍更大,讓差異更明顯
|
865 |
+
final_score = max(0.05, min(1.0, score + temperament_adjustments))
|
866 |
+
|
867 |
return final_score
|
868 |
|
869 |
|
870 |
+
# def calculate_health_score(breed_name: str) -> float:
|
871 |
+
# """計算品種健康分數"""
|
872 |
+
# if breed_name not in breed_health_info:
|
873 |
+
# return 0.5
|
874 |
+
|
875 |
+
# health_notes = breed_health_info[breed_name]['health_notes'].lower()
|
876 |
+
|
877 |
+
# # 嚴重健康問題(降低0.15分)
|
878 |
+
# severe_conditions = [
|
879 |
+
# 'hip dysplasia',
|
880 |
+
# 'heart disease',
|
881 |
+
# 'progressive retinal atrophy',
|
882 |
+
# 'bloat',
|
883 |
+
# 'epilepsy',
|
884 |
+
# 'degenerative myelopathy',
|
885 |
+
# 'von willebrand disease'
|
886 |
+
# ]
|
887 |
+
|
888 |
+
# # 中度健康問題(降低0.1分)
|
889 |
+
# moderate_conditions = [
|
890 |
+
# 'allergies',
|
891 |
+
# 'eye problems',
|
892 |
+
# 'joint problems',
|
893 |
+
# 'hypothyroidism',
|
894 |
+
# 'ear infections',
|
895 |
+
# 'skin issues'
|
896 |
+
# ]
|
897 |
+
|
898 |
+
# # 輕微健康問題(降低0.05分)
|
899 |
+
# minor_conditions = [
|
900 |
+
# 'dental issues',
|
901 |
+
# 'weight gain tendency',
|
902 |
+
# 'minor allergies',
|
903 |
+
# 'seasonal allergies'
|
904 |
+
# ]
|
905 |
+
|
906 |
+
# # 計算基礎健康分數
|
907 |
+
# health_score = 1.0
|
908 |
+
|
909 |
+
# # 根據問題嚴重程度扣分
|
910 |
+
# severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
|
911 |
+
# moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
|
912 |
+
# minor_count = sum(1 for condition in minor_conditions if condition in health_notes)
|
913 |
+
|
914 |
+
# health_score -= (severe_count * 0.15)
|
915 |
+
# health_score -= (moderate_count * 0.1)
|
916 |
+
# health_score -= (minor_count * 0.05)
|
917 |
+
|
918 |
+
# # 壽命影響
|
919 |
+
# try:
|
920 |
+
# lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
|
921 |
+
# years = float(lifespan.split('-')[0])
|
922 |
+
# if years < 8:
|
923 |
+
# health_score *= 0.9
|
924 |
+
# elif years > 13:
|
925 |
+
# health_score *= 1.1
|
926 |
+
# except:
|
927 |
+
# pass
|
928 |
+
|
929 |
+
# # 特殊健康優勢
|
930 |
+
# if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
|
931 |
+
# health_score *= 1.1
|
932 |
+
|
933 |
+
# return max(0.2, min(1.0, health_score))
|
934 |
+
|
935 |
+
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
936 |
+
"""
|
937 |
+
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
|
938 |
+
|
939 |
+
重要改進:
|
940 |
+
1. 根據使用者的健康敏感度調整分數
|
941 |
+
2. 更嚴格的健康問題評估
|
942 |
+
3. 考慮多重健康問題的累積效應
|
943 |
+
4. 加入遺傳疾病的特別考量
|
944 |
+
"""
|
945 |
if breed_name not in breed_health_info:
|
946 |
return 0.5
|
947 |
+
|
948 |
health_notes = breed_health_info[breed_name]['health_notes'].lower()
|
949 |
|
950 |
+
# 嚴重健康問題 - 加重扣分
|
951 |
+
severe_conditions = {
|
952 |
+
'hip dysplasia': -0.25, # 髖關節發育不良,影響生活品質
|
953 |
+
'heart disease': -0.25, # 心臟疾病,需要長期治療
|
954 |
+
'progressive retinal atrophy': -0.20, # 進行性視網膜萎縮,導致失明
|
955 |
+
'bloat': -0.22, # 胃扭轉,致命風險
|
956 |
+
'epilepsy': -0.20, # 癲癇,需要長期藥物控制
|
957 |
+
'degenerative myelopathy': -0.20, # 脊髓退化,影響行動能力
|
958 |
+
'von willebrand disease': -0.18 # 血液凝固障礙
|
959 |
+
}
|
960 |
+
|
961 |
+
# 中度健康問題 - 適度扣分
|
962 |
+
moderate_conditions = {
|
963 |
+
'allergies': -0.12, # 過敏問題,需要持續關注
|
964 |
+
'eye problems': -0.15, # 眼睛問題,可能需要手術
|
965 |
+
'joint problems': -0.15, # 關節問題,影響運動能力
|
966 |
+
'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療
|
967 |
+
'ear infections': -0.10, # 耳道感染,需要定期清理
|
968 |
+
'skin issues': -0.12 # 皮膚問題,需要特殊護理
|
969 |
+
}
|
970 |
+
|
971 |
+
# 輕微健康問題 - 輕微扣分
|
972 |
+
minor_conditions = {
|
973 |
+
'dental issues': -0.08, # 牙齒問題,需要定期護理
|
974 |
+
'weight gain tendency': -0.08, # 易胖體質,需要控制飲食
|
975 |
+
'minor allergies': -0.06, # 輕微過敏,可控制
|
976 |
+
'seasonal allergies': -0.06 # 季節性過敏
|
977 |
+
}
|
978 |
+
|
979 |
# 計算基礎健康分數
|
980 |
health_score = 1.0
|
981 |
|
982 |
+
# 健康問題累積效應計算
|
983 |
+
condition_counts = {
|
984 |
+
'severe': 0,
|
985 |
+
'moderate': 0,
|
986 |
+
'minor': 0
|
987 |
+
}
|
988 |
|
989 |
+
# 計算各等級健康問題的數量和影響
|
990 |
+
for condition, penalty in severe_conditions.items():
|
991 |
+
if condition in health_notes:
|
992 |
+
health_score += penalty
|
993 |
+
condition_counts['severe'] += 1
|
994 |
+
|
995 |
+
for condition, penalty in moderate_conditions.items():
|
996 |
+
if condition in health_notes:
|
997 |
+
health_score += penalty
|
998 |
+
condition_counts['moderate'] += 1
|
999 |
+
|
1000 |
+
for condition, penalty in minor_conditions.items():
|
1001 |
+
if condition in health_notes:
|
1002 |
+
health_score += penalty
|
1003 |
+
condition_counts['minor'] += 1
|
1004 |
+
|
1005 |
+
# 多重問題的額外懲罰(累積效應)
|
1006 |
+
if condition_counts['severe'] > 1:
|
1007 |
+
health_score *= (0.85 ** (condition_counts['severe'] - 1))
|
1008 |
+
if condition_counts['moderate'] > 2:
|
1009 |
+
health_score *= (0.90 ** (condition_counts['moderate'] - 2))
|
1010 |
+
|
1011 |
+
# 根據使用者健康敏感度調整分數
|
1012 |
+
sensitivity_multipliers = {
|
1013 |
+
'low': 1.1, # 較不在意健康問題
|
1014 |
+
'medium': 1.0, # 標準評估
|
1015 |
+
'high': 0.85 # 非常注重健康問題
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0)
|
1019 |
+
|
1020 |
+
# 壽命影響評估
|
1021 |
try:
|
1022 |
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
|
1023 |
years = float(lifespan.split('-')[0])
|
1024 |
if years < 8:
|
1025 |
+
health_score *= 0.85 # 短壽命顯著降低分數
|
1026 |
+
elif years < 10:
|
1027 |
+
health_score *= 0.92 # 較短壽命輕微降低分數
|
1028 |
elif years > 13:
|
1029 |
+
health_score *= 1.1 # 長壽命適度加分
|
1030 |
except:
|
1031 |
pass
|
1032 |
+
|
1033 |
# 特殊健康優勢
|
1034 |
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
|
1035 |
+
health_score *= 1.15
|
1036 |
+
elif 'robust health' in health_notes or 'few health issues' in health_notes:
|
1037 |
health_score *= 1.1
|
1038 |
+
|
1039 |
+
# 確保分數在合理範圍內,但允許更大的分數差異
|
1040 |
+
return max(0.1, min(1.0, health_score))
|
1041 |
+
|
1042 |
+
|
1043 |
+
# def calculate_noise_score(breed_name: str, user_noise_tolerance: str) -> float:
|
1044 |
+
# """計算品種噪音分數"""
|
1045 |
+
# if breed_name not in breed_noise_info:
|
1046 |
+
# return 0.5
|
1047 |
+
|
1048 |
+
# noise_info = breed_noise_info[breed_name]
|
1049 |
+
# noise_level = noise_info['noise_level'].lower()
|
1050 |
+
# noise_notes = noise_info['noise_notes'].lower()
|
1051 |
+
|
1052 |
+
# # 基礎噪音分數矩陣
|
1053 |
+
# base_scores = {
|
1054 |
+
# 'low': {'low': 1.0, 'medium': 0.9, 'high': 0.8},
|
1055 |
+
# 'medium': {'low': 0.7, 'medium': 1.0, 'high': 0.9},
|
1056 |
+
# 'high': {'low': 0.4, 'medium': 0.7, 'high': 1.0},
|
1057 |
+
# 'varies': {'low': 0.6, 'medium': 0.8, 'high': 0.9}
|
1058 |
+
# }
|
1059 |
+
|
1060 |
+
# # 獲取基礎分數
|
1061 |
+
# base_score = base_scores.get(noise_level, {'low': 0.7, 'medium': 0.8, 'high': 0.6})[user_noise_tolerance]
|
1062 |
+
|
1063 |
+
# # 吠叫原因評估
|
1064 |
+
# barking_reasons_penalty = 0
|
1065 |
+
# problematic_triggers = [
|
1066 |
+
# ('separation anxiety', -0.15),
|
1067 |
+
# ('excessive barking', -0.12),
|
1068 |
+
# ('territorial', -0.08),
|
1069 |
+
# ('alert barking', -0.05),
|
1070 |
+
# ('attention seeking', -0.05)
|
1071 |
+
# ]
|
1072 |
|
1073 |
+
# for trigger, penalty in problematic_triggers:
|
1074 |
+
# if trigger in noise_notes:
|
1075 |
+
# barking_reasons_penalty += penalty
|
1076 |
|
1077 |
+
# # 可訓練性補償
|
1078 |
+
# trainability_bonus = 0
|
1079 |
+
# if 'responds well to training' in noise_notes:
|
1080 |
+
# trainability_bonus = 0.1
|
1081 |
+
# elif 'can be trained' in noise_notes:
|
1082 |
+
# trainability_bonus = 0.05
|
1083 |
+
|
1084 |
+
# # 特殊情況
|
1085 |
+
# special_adjustments = 0
|
1086 |
+
# if 'rarely barks' in noise_notes:
|
1087 |
+
# special_adjustments += 0.1
|
1088 |
+
# if 'howls' in noise_notes and user_noise_tolerance == 'low':
|
1089 |
+
# special_adjustments -= 0.1
|
1090 |
+
|
1091 |
+
# final_score = base_score + barking_reasons_penalty + trainability_bonus + special_adjustments
|
1092 |
+
|
1093 |
+
# return max(0.2, min(1.0, final_score))
|
1094 |
+
|
1095 |
+
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
1096 |
+
"""
|
1097 |
+
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
|
1098 |
+
"""
|
1099 |
if breed_name not in breed_noise_info:
|
1100 |
return 0.5
|
1101 |
+
|
1102 |
noise_info = breed_noise_info[breed_name]
|
1103 |
noise_level = noise_info['noise_level'].lower()
|
1104 |
noise_notes = noise_info['noise_notes'].lower()
|
1105 |
+
|
1106 |
+
# 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
|
1107 |
base_scores = {
|
1108 |
+
'low': {
|
1109 |
+
'low': 1.0, # 安靜的狗對低容忍完美匹配
|
1110 |
+
'medium': 0.95, # 安靜的狗對一般容忍很好
|
1111 |
+
'high': 0.90 # 安靜的狗對高容忍當然可以
|
1112 |
+
},
|
1113 |
+
'medium': {
|
1114 |
+
'low': 0.60, # 一般吠叫對低容忍較困難
|
1115 |
+
'medium': 0.90, # 一般吠叫對一般容忍可接受
|
1116 |
+
'high': 0.95 # 一般吠叫對高容忍很好
|
1117 |
+
},
|
1118 |
+
'high': {
|
1119 |
+
'low': 0.25, # 愛叫的狗對低容忍極不適合
|
1120 |
+
'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
|
1121 |
+
'high': 0.90 # 愛叫的狗對高容忍可以接受
|
1122 |
+
},
|
1123 |
+
'varies': {
|
1124 |
+
'low': 0.50, # 不確定的情況對低容忍風險較大
|
1125 |
+
'medium': 0.75, # 不確定的情況對一般容忍可嘗試
|
1126 |
+
'high': 0.85 # 不確定的情況對高容忍問題較小
|
1127 |
+
}
|
1128 |
}
|
1129 |
+
|
1130 |
+
# 取得基礎分數
|
1131 |
+
base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
|
1132 |
+
|
1133 |
+
# 吠叫原因評估,根據環境調整懲罰程度
|
1134 |
+
barking_penalties = {
|
1135 |
+
'separation anxiety': {
|
1136 |
+
'apartment': -0.30, # 在公寓對鄰居影響更大
|
1137 |
+
'house_small': -0.25,
|
1138 |
+
'house_large': -0.20
|
1139 |
+
},
|
1140 |
+
'excessive barking': {
|
1141 |
+
'apartment': -0.25,
|
1142 |
+
'house_small': -0.20,
|
1143 |
+
'house_large': -0.15
|
1144 |
+
},
|
1145 |
+
'territorial': {
|
1146 |
+
'apartment': -0.20, # 在公寓更容易被觸發
|
1147 |
+
'house_small': -0.15,
|
1148 |
+
'house_large': -0.10
|
1149 |
+
},
|
1150 |
+
'alert barking': {
|
1151 |
+
'apartment': -0.15, # 公寓環境刺激較多
|
1152 |
+
'house_small': -0.10,
|
1153 |
+
'house_large': -0.08
|
1154 |
+
},
|
1155 |
+
'attention seeking': {
|
1156 |
+
'apartment': -0.15,
|
1157 |
+
'house_small': -0.12,
|
1158 |
+
'house_large': -0.10
|
1159 |
+
}
|
1160 |
+
}
|
1161 |
+
|
1162 |
+
# 計算環境相關的吠叫懲罰
|
1163 |
+
living_space = user_prefs.living_space
|
1164 |
+
barking_penalty = 0
|
1165 |
+
for trigger, penalties in barking_penalties.items():
|
1166 |
if trigger in noise_notes:
|
1167 |
+
barking_penalty += penalties.get(living_space, -0.15)
|
1168 |
+
|
1169 |
+
# 特殊情況評估
|
1170 |
+
special_adjustments = 0
|
1171 |
+
if user_prefs.has_children:
|
1172 |
+
# 孩童年齡相關調整
|
1173 |
+
child_age_adjustments = {
|
1174 |
+
'toddler': {
|
1175 |
+
'high': -0.20, # 幼童對吵鬧更敏感
|
1176 |
+
'medium': -0.15,
|
1177 |
+
'low': -0.05
|
1178 |
+
},
|
1179 |
+
'school_age': {
|
1180 |
+
'high': -0.15,
|
1181 |
+
'medium': -0.10,
|
1182 |
+
'low': -0.05
|
1183 |
+
},
|
1184 |
+
'teenager': {
|
1185 |
+
'high': -0.10,
|
1186 |
+
'medium': -0.05,
|
1187 |
+
'low': -0.02
|
1188 |
+
}
|
1189 |
+
}
|
1190 |
+
|
1191 |
+
# 根據孩童年齡和噪音等級調整
|
1192 |
+
age_adj = child_age_adjustments.get(user_prefs.children_age,
|
1193 |
+
child_age_adjustments['school_age'])
|
1194 |
+
special_adjustments += age_adj.get(noise_level, -0.10)
|
1195 |
+
|
1196 |
+
# 訓練性補償評估
|
1197 |
trainability_bonus = 0
|
1198 |
if 'responds well to training' in noise_notes:
|
1199 |
+
trainability_bonus = 0.12
|
1200 |
elif 'can be trained' in noise_notes:
|
1201 |
+
trainability_bonus = 0.08
|
1202 |
+
elif 'difficult to train' in noise_notes:
|
1203 |
+
trainability_bonus = 0.02
|
1204 |
+
|
1205 |
+
# 夜間吠叫特別考量
|
1206 |
+
if 'night barking' in noise_notes or 'howls' in noise_notes:
|
1207 |
+
if user_prefs.living_space == 'apartment':
|
1208 |
+
special_adjustments -= 0.15
|
1209 |
+
elif user_prefs.living_space == 'house_small':
|
1210 |
+
special_adjustments -= 0.10
|
1211 |
+
else:
|
1212 |
+
special_adjustments -= 0.05
|
1213 |
+
|
1214 |
+
# 計算最終分數,確保更大的分數範圍
|
1215 |
+
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
|
1216 |
+
return max(0.1, min(1.0, final_score))
|
1217 |
+
|
1218 |
|
1219 |
+
# # 計算所有基礎分數
|
1220 |
+
# scores = {
|
1221 |
+
# 'space': calculate_space_score(
|
1222 |
+
# breed_info['Size'],
|
1223 |
+
# user_prefs.living_space,
|
1224 |
+
# user_prefs.space_for_play,
|
1225 |
+
# breed_info.get('Exercise Needs', 'Moderate')
|
1226 |
+
# ),
|
1227 |
+
# 'exercise': calculate_exercise_score(
|
1228 |
+
# breed_info.get('Exercise Needs', 'Moderate'),
|
1229 |
+
# user_prefs.exercise_time
|
1230 |
+
# ),
|
1231 |
+
# 'grooming': calculate_grooming_score(
|
1232 |
+
# breed_info.get('Grooming Needs', 'Moderate'),
|
1233 |
+
# user_prefs.grooming_commitment.lower(),
|
1234 |
+
# breed_info['Size']
|
1235 |
+
# ),
|
1236 |
+
# 'experience': calculate_experience_score(
|
1237 |
+
# breed_info.get('Care Level', 'Moderate'),
|
1238 |
+
# user_prefs.experience_level,
|
1239 |
+
# breed_info.get('Temperament', '')
|
1240 |
+
# ),
|
1241 |
+
# 'health': calculate_health_score(breed_info.get('Breed', '')),
|
1242 |
+
# 'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
1243 |
+
# }
|
1244 |
+
|
1245 |
+
|
1246 |
+
# # 優化權重配置
|
1247 |
+
# weights = {
|
1248 |
+
# 'space': 0.28,
|
1249 |
+
# 'exercise': 0.18,
|
1250 |
+
# 'grooming': 0.12,
|
1251 |
+
# 'experience': 0.22,
|
1252 |
+
# 'health': 0.12,
|
1253 |
+
# 'noise': 0.08
|
1254 |
+
# }
|
1255 |
|
1256 |
+
# # 計算加權總分
|
1257 |
+
# weighted_score = sum(score * weights[category] for category, score in scores.items())
|
1258 |
+
|
1259 |
+
# def amplify_score(score):
|
1260 |
+
# """
|
1261 |
+
# 優化分數放大函數,確保分數範圍合理且結果一致
|
1262 |
+
# """
|
1263 |
+
# # 基礎調整
|
1264 |
+
# adjusted = (score - 0.35) * 1.8
|
1265 |
+
|
1266 |
+
# # 使用 3.2 次方使曲線更平滑
|
1267 |
+
# amplified = pow(adjusted, 3.2) / 5.8 + score
|
1268 |
+
|
1269 |
+
# # 特別處理高分區間,確保不超過95%
|
1270 |
+
# if amplified > 0.90:
|
1271 |
+
# # 壓縮高分區間,確保最高到95%
|
1272 |
+
# amplified = 0.90 + (amplified - 0.90) * 0.5
|
1273 |
|
1274 |
+
# # 確保最終分數在合理範圍內(0.55-0.95)
|
1275 |
+
# final_score = max(0.55, min(0.95, amplified))
|
1276 |
+
|
1277 |
+
# # 四捨五入到小數點後第三位
|
1278 |
+
# return round(final_score, 3)
|
1279 |
+
|
1280 |
+
# final_score = amplify_score(weighted_score)
|
1281 |
+
|
1282 |
+
# # 四捨五入所有分數
|
1283 |
+
# scores = {k: round(v, 4) for k, v in scores.items()}
|
1284 |
+
# scores['overall'] = round(final_score, 4)
|
1285 |
+
|
1286 |
+
# return scores
|
1287 |
+
|
1288 |
+
# except Exception as e:
|
1289 |
+
# print(f"Error details: {str(e)}")
|
1290 |
+
# print(f"breed_info: {breed_info}")
|
1291 |
+
# # print(f"Error in calculate_compatibility_score: {str(e)}")
|
1292 |
+
# return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|
1293 |
|
|
|
1294 |
scores = {
|
1295 |
'space': calculate_space_score(
|
1296 |
breed_info['Size'],
|
|
|
1316 |
'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
1317 |
}
|
1318 |
|
1319 |
+
# 2. 優化權重配置 - 根據使用者情況動態調整權重
|
1320 |
+
base_weights = {
|
|
|
1321 |
'space': 0.28,
|
1322 |
'exercise': 0.18,
|
1323 |
'grooming': 0.12,
|
|
|
1326 |
'noise': 0.08
|
1327 |
}
|
1328 |
|
1329 |
+
# 根據特殊情況調整權重
|
1330 |
+
weights = base_weights.copy()
|
1331 |
+
|
1332 |
+
# 有孩童時的權重調整
|
1333 |
+
if user_prefs.has_children:
|
1334 |
+
if user_prefs.children_age == 'toddler':
|
1335 |
+
weights['experience'] *= 1.4 # 幼童需要更有經驗的配對
|
1336 |
+
weights['noise'] *= 1.3 # 噪音影響更重要
|
1337 |
+
weights['health'] *= 1.2 # 健康因素更關鍵
|
1338 |
+
elif user_prefs.children_age == 'school_age':
|
1339 |
+
weights['experience'] *= 1.2
|
1340 |
+
weights['noise'] *= 1.2
|
1341 |
+
|
1342 |
+
# 居住環境的權重調整
|
1343 |
+
if user_prefs.living_space == 'apartment':
|
1344 |
+
weights['space'] *= 1.3 # 空間限制更重要
|
1345 |
+
weights['noise'] *= 1.2 # 噪音影響更顯著
|
1346 |
+
|
1347 |
+
# 重新正規化權重
|
1348 |
+
total_weight = sum(weights.values())
|
1349 |
+
weights = {k: v/total_weight for k, v in weights.items()}
|
1350 |
|
1351 |
+
# 3. 計算加權總分
|
1352 |
+
weighted_score = sum(score * weights[category] for category, score in scores.items())
|
1353 |
+
|
1354 |
+
# 4. 改進的分數放大函數
|
1355 |
def amplify_score(score):
|
1356 |
"""
|
1357 |
+
改進的分數放大函數,提供更大的分數差異。
|
1358 |
+
|
1359 |
+
主要改進:
|
1360 |
+
1. 調整基礎計算參數以產生更明顯的差異
|
1361 |
+
2. 根據分數區間使用不同的放大策略
|
1362 |
+
3. 擴大最終分數範圍
|
1363 |
"""
|
1364 |
+
# 基礎調整,擴大差異
|
1365 |
+
adjusted = (score - 0.4) * 2.0 # 從0.35調整到0.4,倍數從1.8提高到2.0
|
1366 |
|
1367 |
+
# 使用更陡峭的曲線,從3.2降到2.8使曲線不會過於極端
|
1368 |
+
amplified = pow(adjusted, 2.8) / 4.5 + score
|
1369 |
|
1370 |
+
# 分數區間處理
|
1371 |
+
if score < 0.65: # 低分區間
|
1372 |
+
amplified *= 0.85 # 進一步降低不適合的配對
|
1373 |
+
elif score > 0.85: # 高分區間
|
1374 |
+
amplified = 0.85 + (amplified - 0.85) * 0.4 # 高分區間的緩和壓縮
|
1375 |
|
1376 |
+
# 擴大分數範圍到0.45-0.95,原本是0.55-0.95
|
1377 |
+
final_score = max(0.45, min(0.95, amplified))
|
1378 |
|
1379 |
# 四捨五入到小數點後第三位
|
1380 |
return round(final_score, 3)
|
1381 |
+
|
1382 |
+
# 5. 計算最終分數並應用關鍵條件檢查
|
1383 |
final_score = amplify_score(weighted_score)
|
1384 |
+
|
1385 |
+
# 針對特殊情況的最終調整
|
1386 |
+
if user_prefs.has_children and scores['experience'] < 0.4:
|
1387 |
+
final_score *= 0.8 # 有孩童但經驗分數過低時大幅降低
|
1388 |
+
if user_prefs.living_space == 'apartment' and scores['noise'] < 0.3:
|
1389 |
+
final_score *= 0.75 # 住公寓但噪音分數極低時顯著降低
|
1390 |
|
1391 |
+
# 6. 準備返回結果
|
1392 |
scores = {k: round(v, 4) for k, v in scores.items()}
|
1393 |
scores['overall'] = round(final_score, 4)
|
1394 |
+
|
1395 |
return scores
|
1396 |
|
1397 |
except Exception as e:
|
1398 |
print(f"Error details: {str(e)}")
|
1399 |
print(f"breed_info: {breed_info}")
|
|
|
1400 |
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|