Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -132,19 +132,6 @@ def get_akc_breeds_link(breed):
|
|
132 |
return f"{base_url}{breed_url}/"
|
133 |
|
134 |
|
135 |
-
# async def predict_single_dog(image):
|
136 |
-
# image_tensor = preprocess_image(image)
|
137 |
-
# with torch.no_grad():
|
138 |
-
# output = model(image_tensor)
|
139 |
-
# logits = output[0] if isinstance(output, tuple) else output
|
140 |
-
# probabilities = F.softmax(logits, dim=1)
|
141 |
-
# topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
142 |
-
# top1_prob = topk_probs[0][0].item()
|
143 |
-
# topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
144 |
-
# topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
145 |
-
# return top1_prob, topk_breeds, topk_probs_percent
|
146 |
-
|
147 |
-
|
148 |
async def predict_single_dog(image):
|
149 |
image_tensor = preprocess_image(image)
|
150 |
with torch.no_grad():
|
@@ -200,6 +187,7 @@ def non_max_suppression(boxes, iou_threshold):
|
|
200 |
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
201 |
return keep
|
202 |
|
|
|
203 |
def calculate_iou(box1, box2):
|
204 |
x1 = max(box1[0], box2[0])
|
205 |
y1 = max(box1[1], box2[1])
|
@@ -214,160 +202,6 @@ def calculate_iou(box1, box2):
|
|
214 |
return iou
|
215 |
|
216 |
|
217 |
-
|
218 |
-
# async def process_single_dog(image):
|
219 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
220 |
-
# if top1_prob < 0.15:
|
221 |
-
# initial_state = {
|
222 |
-
# "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
|
223 |
-
# "buttons": [],
|
224 |
-
# "show_back": False,
|
225 |
-
# "image": None,
|
226 |
-
# "is_multi_dog": False
|
227 |
-
# }
|
228 |
-
# return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
229 |
-
|
230 |
-
# breed = topk_breeds[0]
|
231 |
-
# description = get_dog_description(breed)
|
232 |
-
|
233 |
-
# if top1_prob >= 0.45:
|
234 |
-
# formatted_description = format_description(description, breed)
|
235 |
-
# initial_state = {
|
236 |
-
# "explanation": formatted_description,
|
237 |
-
# "buttons": [],
|
238 |
-
# "show_back": False,
|
239 |
-
# "image": image,
|
240 |
-
# "is_multi_dog": False
|
241 |
-
# }
|
242 |
-
# return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
243 |
-
# else:
|
244 |
-
# explanation = (
|
245 |
-
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
246 |
-
# f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
247 |
-
# f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
248 |
-
# f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
249 |
-
# "Click on a button to view more information about the breed."
|
250 |
-
# )
|
251 |
-
# buttons = [
|
252 |
-
# gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
|
253 |
-
# gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
|
254 |
-
# gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
255 |
-
# ]
|
256 |
-
# initial_state = {
|
257 |
-
# "explanation": explanation,
|
258 |
-
# "buttons": buttons,
|
259 |
-
# "show_back": True,
|
260 |
-
# "image": image,
|
261 |
-
# "is_multi_dog": False
|
262 |
-
# }
|
263 |
-
# return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
264 |
-
|
265 |
-
|
266 |
-
# async def predict(image):
|
267 |
-
# if image is None:
|
268 |
-
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
269 |
-
|
270 |
-
# try:
|
271 |
-
# if isinstance(image, np.ndarray):
|
272 |
-
# image = Image.fromarray(image)
|
273 |
-
|
274 |
-
# dogs = await detect_multiple_dogs(image)
|
275 |
-
|
276 |
-
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
277 |
-
# buttons = []
|
278 |
-
# annotated_image = image.copy()
|
279 |
-
# draw = ImageDraw.Draw(annotated_image)
|
280 |
-
# font = ImageFont.load_default()
|
281 |
-
|
282 |
-
# dogs_info = ""
|
283 |
-
|
284 |
-
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
285 |
-
# buttons_html = ""
|
286 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
287 |
-
# color = color_list[i % len(color_list)]
|
288 |
-
# draw.rectangle(box, outline=color, width=3)
|
289 |
-
# draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
|
290 |
-
|
291 |
-
# combined_confidence = detection_confidence * top1_prob
|
292 |
-
# dogs_info += f'<div class="dog-info" style="border-left: 5px solid {color}; margin-bottom: 20px; padding: 15px;">'
|
293 |
-
# dogs_info += f'<h2>Dog {i+1}</h2>'
|
294 |
-
|
295 |
-
# if top1_prob >= 0.45:
|
296 |
-
# breed = topk_breeds[0]
|
297 |
-
# description = get_dog_description(breed)
|
298 |
-
# dogs_info += format_description_html(description, breed)
|
299 |
-
|
300 |
-
# elif combined_confidence >= 0.15:
|
301 |
-
# dogs_info += f"<p>Top 3 possible breeds:</p><ul>"
|
302 |
-
# for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3])):
|
303 |
-
# prob = float(prob.replace('%', ''))
|
304 |
-
# dogs_info += f"<li><strong>{breed}</strong> ({prob:.2f}% confidence)</li>"
|
305 |
-
# dogs_info += "</ul>"
|
306 |
-
|
307 |
-
# for breed in topk_breeds[:3]:
|
308 |
-
# button_id = f"Dog {i+1}: More about {breed}"
|
309 |
-
# buttons_html += f'<button class="breed-button" onclick="handle_button_click(\'{button_id}\')">{breed}</button>'
|
310 |
-
# buttons.append(button_id)
|
311 |
-
|
312 |
-
# else:
|
313 |
-
# dogs_info += "<p>The image is unclear or the breed is not in the dataset. Please upload a clearer image.</p>"
|
314 |
-
|
315 |
-
# dogs_info += '</div>'
|
316 |
-
|
317 |
-
|
318 |
-
# buttons_html = ""
|
319 |
-
|
320 |
-
# html_output = f"""
|
321 |
-
# <style>
|
322 |
-
# .dog-info {{ border: 1px solid #ddd; margin-bottom: 20px; padding: 15px; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }}
|
323 |
-
# .dog-info h2 {{ background-color: #f0f0f0; padding: 10px; margin: -15px -15px 15px -15px; border-radius: 5px 5px 0 0; }}
|
324 |
-
# .breed-buttons {{ margin-top: 10px; }}
|
325 |
-
# .breed-button {{ margin-right: 10px; margin-bottom: 10px; padding: 5px 10px; background-color: #4CAF50; color: white; border: none; border-radius: 3px; cursor: pointer; }}
|
326 |
-
# </style>
|
327 |
-
# {dogs_info}
|
328 |
-
# """
|
329 |
-
|
330 |
-
# if buttons:
|
331 |
-
# html_output += """
|
332 |
-
# <script>
|
333 |
-
# function handle_button_click(button_id) {
|
334 |
-
# const radio = document.querySelector('input[type=radio][value="' + button_id + '"]');
|
335 |
-
# if (radio) {
|
336 |
-
# radio.click();
|
337 |
-
# } else {
|
338 |
-
# console.error("Radio button not found:", button_id);
|
339 |
-
# }
|
340 |
-
# }
|
341 |
-
# </script>
|
342 |
-
# """
|
343 |
-
# initial_state = {
|
344 |
-
# "dogs_info": dogs_info,
|
345 |
-
# "buttons": buttons,
|
346 |
-
# "show_back": True,
|
347 |
-
# "image": annotated_image,
|
348 |
-
# "is_multi_dog": len(dogs) > 1,
|
349 |
-
# "html_output": html_output
|
350 |
-
# }
|
351 |
-
# return html_output, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
352 |
-
# else:
|
353 |
-
# initial_state = {
|
354 |
-
# "dogs_info": dogs_info,
|
355 |
-
# "buttons": [],
|
356 |
-
# "show_back": False,
|
357 |
-
# "image": annotated_image,
|
358 |
-
# "is_multi_dog": len(dogs) > 1,
|
359 |
-
# "html_output": html_output
|
360 |
-
# }
|
361 |
-
# return html_output, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
362 |
-
|
363 |
-
|
364 |
-
# except Exception as e:
|
365 |
-
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
366 |
-
# print(error_msg)
|
367 |
-
# return error_msg, None, gr.update(visible=False, choices=[]), None
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
async def process_single_dog(image):
|
372 |
top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)
|
373 |
|
@@ -536,64 +370,6 @@ def format_description_html(description, breed):
|
|
536 |
return html
|
537 |
|
538 |
|
539 |
-
def go_back(state):
|
540 |
-
buttons = state.get("buttons", [])
|
541 |
-
return (
|
542 |
-
state["html_output"],
|
543 |
-
state["image"],
|
544 |
-
gr.update(visible=True, choices=buttons),
|
545 |
-
gr.update(visible=False),
|
546 |
-
state
|
547 |
-
)
|
548 |
-
|
549 |
-
|
550 |
-
# with gr.Blocks() as iface:
|
551 |
-
# gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
552 |
-
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
553 |
-
|
554 |
-
# with gr.Row():
|
555 |
-
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
556 |
-
# output_image = gr.Image(label="Annotated Image")
|
557 |
-
|
558 |
-
# output = gr.HTML(label="Prediction Results")
|
559 |
-
|
560 |
-
# breed_buttons = gr.Radio(choices=[], label="More Information", visible=False)
|
561 |
-
|
562 |
-
# back_button = gr.Button("Back", visible=False)
|
563 |
-
|
564 |
-
# initial_state = gr.State()
|
565 |
-
|
566 |
-
# input_image.change(
|
567 |
-
# predict,
|
568 |
-
# inputs=input_image,
|
569 |
-
# outputs=[output, output_image, breed_buttons, initial_state]
|
570 |
-
# )
|
571 |
-
|
572 |
-
# breed_buttons.change(
|
573 |
-
# show_details_html,
|
574 |
-
# inputs=[breed_buttons, output, initial_state],
|
575 |
-
# outputs=[output, back_button, initial_state]
|
576 |
-
# )
|
577 |
-
|
578 |
-
# back_button.click(
|
579 |
-
# go_back,
|
580 |
-
# inputs=[initial_state],
|
581 |
-
# outputs=[output, output_image, breed_buttons, back_button, initial_state]
|
582 |
-
# )
|
583 |
-
|
584 |
-
# gr.Examples(
|
585 |
-
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
586 |
-
# inputs=input_image
|
587 |
-
# )
|
588 |
-
|
589 |
-
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
590 |
-
|
591 |
-
|
592 |
-
# if __name__ == "__main__":
|
593 |
-
# iface.launch()
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
with gr.Blocks() as iface:
|
598 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
599 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed and provide detailed information!</p>")
|
|
|
132 |
return f"{base_url}{breed_url}/"
|
133 |
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
async def predict_single_dog(image):
|
136 |
image_tensor = preprocess_image(image)
|
137 |
with torch.no_grad():
|
|
|
187 |
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
188 |
return keep
|
189 |
|
190 |
+
|
191 |
def calculate_iou(box1, box2):
|
192 |
x1 = max(box1[0], box2[0])
|
193 |
y1 = max(box1[1], box2[1])
|
|
|
202 |
return iou
|
203 |
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
async def process_single_dog(image):
|
206 |
top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)
|
207 |
|
|
|
370 |
return html
|
371 |
|
372 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
with gr.Blocks() as iface:
|
374 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
375 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed and provide detailed information!</p>")
|