DawnC commited on
Commit
49df0b4
·
1 Parent(s): 1cbed69

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -40
app.py CHANGED
@@ -312,7 +312,7 @@ def _predict_single_dog(image):
312
  # return dogs
313
  # 此為如果後面調不好 使用的版本
314
 
315
- async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5):
316
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
317
  dogs = []
318
  for box in results.boxes:
@@ -320,42 +320,31 @@ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5):
320
  xyxy = box.xyxy[0].tolist()
321
  confidence = box.conf.item()
322
  area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
323
- if area > 1000: # 過濾掉太小的檢測框
 
324
  cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
325
  dogs.append((cropped_image, confidence, xyxy))
326
 
327
- # 合併重疊的檢測框
328
- dogs = merge_overlapping_boxes(dogs, iou_threshold=0.6)
 
 
 
 
 
 
 
 
 
 
329
 
330
  return dogs
331
 
332
- def merge_overlapping_boxes(dogs, iou_threshold=0.6):
333
- merged_dogs = []
334
- while dogs:
335
- base = dogs.pop(0)
336
- i = 0
337
- while i < len(dogs):
338
- if calculate_iou(base[2], dogs[i][2]) > iou_threshold:
339
- # 合併重疊的框
340
- base = merge_boxes(base, dogs.pop(i))
341
- else:
342
- i += 1
343
- merged_dogs.append(base)
344
- return merged_dogs
345
-
346
- def merge_boxes(box1, box2):
347
- xyxy1, conf1, _ = box1
348
- xyxy2, conf2, _ = box2
349
- merged_xyxy = [
350
- min(xyxy1[0], xyxy2[0]),
351
- min(xyxy1[1], xyxy2[1]),
352
- max(xyxy1[2], xyxy2[2]),
353
- max(xyxy1[3], xyxy2[3])
354
- ]
355
- merged_conf = max(conf1, conf2)
356
- merged_image = Image.new('RGB', (int(merged_xyxy[2] - merged_xyxy[0]), int(merged_xyxy[3] - merged_xyxy[1])))
357
- merged_image.paste(box1[0], (0, 0))
358
- return (merged_image, merged_conf, merged_xyxy)
359
 
360
  def calculate_iou(box1, box2):
361
  # 計算兩個邊界框的交集面積
@@ -494,15 +483,15 @@ async def predict(image):
494
  image = Image.fromarray(image)
495
 
496
  dogs = await detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5)
497
-
498
- # 如果檢測到的狗的數量不合理,嘗試調整參數重新檢測
499
- if len(dogs) > 5 or (len(dogs) == 0 and has_dog_features(image)):
500
- dogs = await detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.4)
501
-
502
  if len(dogs) == 0:
503
  return await process_single_dog(image)
504
  elif len(dogs) == 1:
505
- return await process_single_dog(dogs[0][0])
 
 
 
 
506
  else:
507
  # 多狗情境
508
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
@@ -558,12 +547,13 @@ async def predict(image):
558
  print(error_msg) # 添加日誌輸出
559
  return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
560
 
561
- def has_dog_features(image):
562
- # 使用簡單的啟發式方法來檢查圖像是否可能包含狗
563
  # 這裡可以使用更複雜的方法,如特徵提取或輕量級模型
564
  gray = image.convert('L')
565
  edges = gray.filter(ImageFilter.FIND_EDGES)
566
- return np.mean(np.array(edges)) > 10 # 假設邊緣檢測後的平均值大於 10 表示可能有狗
 
567
 
568
  async def process_single_dog(image):
569
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
 
312
  # return dogs
313
  # 此為如果後面調不好 使用的版本
314
 
315
+ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.3):
316
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
317
  dogs = []
318
  for box in results.boxes:
 
320
  xyxy = box.xyxy[0].tolist()
321
  confidence = box.conf.item()
322
  area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
323
+ image_area = image.width * image.height
324
+ if area > 0.01 * image_area: # 過濾掉太小的檢測框,但使用相對面積
325
  cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
326
  dogs.append((cropped_image, confidence, xyxy))
327
 
328
+ # 如果檢測到的狗太少,嘗試降低閾值再次檢測
329
+ if len(dogs) < 2:
330
+ results = model_yolo(image, conf=conf_threshold/2, iou=iou_threshold)[0]
331
+ for box in results.boxes:
332
+ if box.cls == 16:
333
+ xyxy = box.xyxy[0].tolist()
334
+ confidence = box.conf.item()
335
+ area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
336
+ image_area = image.width * image.height
337
+ if area > 0.01 * image_area and not is_box_duplicate(xyxy, [d[2] for d in dogs]):
338
+ cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
339
+ dogs.append((cropped_image, confidence, xyxy))
340
 
341
  return dogs
342
 
343
+ def is_box_duplicate(new_box, existing_boxes, iou_threshold=0.5):
344
+ for box in existing_boxes:
345
+ if calculate_iou(new_box, box) > iou_threshold:
346
+ return True
347
+ return False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348
 
349
  def calculate_iou(box1, box2):
350
  # 計算兩個邊界框的交集面積
 
483
  image = Image.fromarray(image)
484
 
485
  dogs = await detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5)
486
+
 
 
 
 
487
  if len(dogs) == 0:
488
  return await process_single_dog(image)
489
  elif len(dogs) == 1:
490
+ # 如果只檢測到一隻狗,但圖像可能包含多隻狗,再次嘗試檢測
491
+ if has_multiple_dogs(image):
492
+ dogs = await detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.2)
493
+ if len(dogs) == 1:
494
+ return await process_single_dog(dogs[0][0])
495
  else:
496
  # 多狗情境
497
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
 
547
  print(error_msg) # 添加日誌輸出
548
  return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
549
 
550
+ def has_multiple_dogs(image):
551
+ # 使用簡單的啟發式方法來檢查圖像是否可能包含多隻狗
552
  # 這裡可以使用更複雜的方法,如特徵提取或輕量級模型
553
  gray = image.convert('L')
554
  edges = gray.filter(ImageFilter.FIND_EDGES)
555
+ edge_pixels = np.array(edges)
556
+ return np.sum(edge_pixels > 128) > image.width * image.height * 0.1 # 假設邊緣像素比例大於 10% 表示可能有多隻狗
557
 
558
  async def process_single_dog(image):
559
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)