DawnC commited on
Commit
5142de0
·
1 Parent(s): 8dfa681

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -123
app.py CHANGED
@@ -128,127 +128,6 @@ def preprocess_image(image):
128
  def get_akc_breeds_link():
129
  return "https://www.akc.org/dog-breeds/"
130
 
131
- # def predict(image):
132
- # if image is None:
133
- # return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
134
-
135
- # try:
136
- # image_tensor = preprocess_image(image)
137
- # with torch.no_grad():
138
- # output = model(image_tensor)
139
- # logits = output[0] if isinstance(output, tuple) else output
140
-
141
- # probabilities = F.softmax(logits, dim=1)
142
- # topk_probs, topk_indices = torch.topk(probabilities, k=3)
143
-
144
- # top1_prob = topk_probs[0][0].item()
145
- # topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
146
- # topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
147
-
148
- # if top1_prob >= 0.5:
149
- # breed = topk_breeds[0]
150
- # description = get_dog_description(breed)
151
- # return format_description(description, breed), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
152
-
153
- # elif top1_prob < 0.2:
154
- # return ("The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.",
155
- # gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
156
- # else:
157
- # explanation = (
158
- # f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
159
- # f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
160
- # f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
161
- # f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
162
- # "Click on a button to view more information about the breed."
163
- # )
164
- # return explanation, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
165
-
166
- # except Exception as e:
167
- # return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
168
-
169
-
170
- # def format_description(description, breed):
171
- # if isinstance(description, dict):
172
- # formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
173
- # else:
174
- # formatted_description = description
175
-
176
- # akc_link = get_akc_breeds_link()
177
- # formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
178
-
179
- # disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
180
- # "You may need to search for the specific breed on that page. "
181
- # "I am not responsible for the content on external sites. "
182
- # "Please refer to the AKC's terms of use and privacy policy.*")
183
- # formatted_description += disclaimer
184
-
185
- # return formatted_description
186
-
187
- # def show_details(breed):
188
- # breed_name = breed.split("More about ")[-1]
189
- # description = get_dog_description(breed_name)
190
- # return format_description(description, breed_name)
191
-
192
- # with gr.Blocks(css="""
193
- # .container {
194
- # max-width: 900px;
195
- # margin: 0 auto;
196
- # padding: 20px;
197
- # background-color: rgba(255, 255, 255, 0.9);
198
- # border-radius: 15px;
199
- # box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
200
- # }
201
- # .gr-form { display: flex; flex-direction: column; align-items: center; }
202
- # .gr-box { width: 100%; max-width: 500px; }
203
- # .output-markdown, .output-image {
204
- # margin-top: 20px;
205
- # padding: 15px;
206
- # background-color: #f5f5f5;
207
- # border-radius: 10px;
208
- # }
209
- # .examples {
210
- # display: flex;
211
- # justify-content: center;
212
- # flex-wrap: wrap;
213
- # gap: 10px;
214
- # margin-top: 20px;
215
- # }
216
- # .examples img {
217
- # width: 100px;
218
- # height: 100px;
219
- # object-fit: cover;
220
- # }
221
- # """) as iface:
222
-
223
- # gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>")
224
- # gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
225
-
226
- # with gr.Row():
227
- # input_image = gr.Image(label="Upload a dog image", type="numpy")
228
- # output = gr.Markdown(label="Prediction Results")
229
-
230
- # with gr.Row():
231
- # btn1 = gr.Button("View More 1", visible=False)
232
- # btn2 = gr.Button("View More 2", visible=False)
233
- # btn3 = gr.Button("View More 3", visible=False)
234
-
235
- # input_image.change(predict, inputs=input_image, outputs=[output, btn1, btn2, btn3])
236
-
237
- # btn1.click(show_details, inputs=btn1, outputs=output)
238
- # btn2.click(show_details, inputs=btn2, outputs=output)
239
- # btn3.click(show_details, inputs=btn3, outputs=output)
240
-
241
- # gr.Examples(
242
- # examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
243
- # inputs=input_image
244
- # )
245
-
246
- # gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">Dog Breed Classifier</a>')
247
-
248
- # # launch the program
249
- # if __name__ == "__main__":
250
- # iface.launch()
251
-
252
 
253
  def format_description(description, breed):
254
  if isinstance(description, dict):
@@ -284,7 +163,7 @@ def _predict_single_dog(image):
284
  return top1_prob, topk_breeds, topk_probs_percent
285
 
286
 
287
- async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5):
288
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
289
  dogs = []
290
  for box in results.boxes:
@@ -304,7 +183,7 @@ async def predict(image):
304
  if isinstance(image, np.ndarray):
305
  image = Image.fromarray(image)
306
 
307
- dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
308
 
309
  if len(dogs) <= 1:
310
  return await process_single_dog(image)
@@ -362,6 +241,7 @@ async def predict(image):
362
  error_msg = f"An error occurred: {str(e)}"
363
  print(error_msg) # 添加日誌輸出
364
  return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
 
365
 
366
  async def process_single_dog(image):
367
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
 
128
  def get_akc_breeds_link():
129
  return "https://www.akc.org/dog-breeds/"
130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
  def format_description(description, breed):
133
  if isinstance(description, dict):
 
163
  return top1_prob, topk_breeds, topk_probs_percent
164
 
165
 
166
+ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.3):
167
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
168
  dogs = []
169
  for box in results.boxes:
 
183
  if isinstance(image, np.ndarray):
184
  image = Image.fromarray(image)
185
 
186
+ dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.3)
187
 
188
  if len(dogs) <= 1:
189
  return await process_single_dog(image)
 
241
  error_msg = f"An error occurred: {str(e)}"
242
  print(error_msg) # 添加日誌輸出
243
  return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
244
+
245
 
246
  async def process_single_dog(image):
247
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)