Spaces:
Running
on
Zero
Running
on
Zero
Update breed_recommendation.py
Browse files- breed_recommendation.py +17 -57
breed_recommendation.py
CHANGED
@@ -10,46 +10,6 @@ from recommendation_html_format import format_recommendation_html, get_breed_rec
|
|
10 |
from search_history import create_history_tab, create_history_component
|
11 |
|
12 |
|
13 |
-
def filter_breed_matches(user_prefs: UserPreferences, top_n: int = 10):
|
14 |
-
"""
|
15 |
-
根據使用者偏好篩選並推薦狗狗品種。
|
16 |
-
|
17 |
-
Parameters:
|
18 |
-
user_prefs: 使用者偏好設定
|
19 |
-
top_n: 要返回的推薦數量
|
20 |
-
|
21 |
-
Returns:
|
22 |
-
List[Dict]: 排序後的推薦品種列表
|
23 |
-
"""
|
24 |
-
all_breeds = []
|
25 |
-
for breed_info in breed_database:
|
26 |
-
score = calculate_compatibility_score(breed_info, user_prefs)
|
27 |
-
if score is not None: # 只添加未被過濾的品種
|
28 |
-
all_breeds.append({
|
29 |
-
'breed': breed_info['Breed'],
|
30 |
-
'final_score': score['overall'],
|
31 |
-
'base_score': score.get('base_score', 0),
|
32 |
-
'bonus_score': score.get('bonus_score', 0),
|
33 |
-
'size': breed_info['Size'],
|
34 |
-
'scores': score
|
35 |
-
})
|
36 |
-
|
37 |
-
# 根據體型偏好過濾
|
38 |
-
if user_prefs.size_preference != "no_preference":
|
39 |
-
filtered_breeds = [b for b in all_breeds if b['size'].lower() == user_prefs.size_preference.lower()]
|
40 |
-
# 如果符合體型的品種太少,調整返回數量
|
41 |
-
if len(filtered_breeds) < 5: # 設定最少要有5種品種
|
42 |
-
top_n = len(filtered_breeds)
|
43 |
-
else:
|
44 |
-
filtered_breeds = all_breeds
|
45 |
-
|
46 |
-
# 為每個品種添加排名
|
47 |
-
sorted_breeds = sorted(filtered_breeds, key=lambda x: x['final_score'], reverse=True)
|
48 |
-
for i, breed in enumerate(sorted_breeds, 1):
|
49 |
-
breed['rank'] = i
|
50 |
-
|
51 |
-
return sorted_breeds[:top_n]
|
52 |
-
|
53 |
def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):
|
54 |
|
55 |
with gr.TabItem("Breed Recommendation"):
|
@@ -214,23 +174,23 @@ def create_recommendation_tab(UserPreferences, get_breed_recommendations, format
|
|
214 |
def on_find_match_click(*args):
|
215 |
try:
|
216 |
user_prefs = UserPreferences(
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
|
235 |
recommendations = get_breed_recommendations(user_prefs, top_n=10)
|
236 |
|
|
|
10 |
from search_history import create_history_tab, create_history_component
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):
|
14 |
|
15 |
with gr.TabItem("Breed Recommendation"):
|
|
|
174 |
def on_find_match_click(*args):
|
175 |
try:
|
176 |
user_prefs = UserPreferences(
|
177 |
+
living_space=args[0],
|
178 |
+
yard_access=args[1],
|
179 |
+
exercise_time=args[2],
|
180 |
+
exercise_type=args[3],
|
181 |
+
grooming_commitment=args[4],
|
182 |
+
size_preference=args[5],
|
183 |
+
experience_level=args[6],
|
184 |
+
time_availability=args[7],
|
185 |
+
has_children=args[8],
|
186 |
+
children_age=args[9] if args[8] else None,
|
187 |
+
noise_tolerance=args[10],
|
188 |
+
space_for_play=True if args[0] != "apartment" else False,
|
189 |
+
other_pets=False,
|
190 |
+
climate="moderate",
|
191 |
+
health_sensitivity="medium",
|
192 |
+
barking_acceptance=args[10]
|
193 |
+
)
|
194 |
|
195 |
recommendations = get_breed_recommendations(user_prefs, top_n=10)
|
196 |
|