DawnC commited on
Commit
65416ef
·
1 Parent(s): f604683

Update scoring_calculation_system.py

Browse files
Files changed (1) hide show
  1. scoring_calculation_system.py +118 -63
scoring_calculation_system.py CHANGED
@@ -1291,87 +1291,142 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
1291
  # # print(f"Error in calculate_compatibility_score: {str(e)}")
1292
  # return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
1293
 
1294
- scores = {
1295
- 'space': calculate_space_score(
 
 
 
 
 
 
 
1296
  breed_info['Size'],
1297
  user_prefs.living_space,
1298
  user_prefs.space_for_play,
1299
  breed_info.get('Exercise Needs', 'Moderate')
1300
- ),
1301
- 'exercise': calculate_exercise_score(
 
 
 
 
 
 
 
 
1302
  breed_info.get('Exercise Needs', 'Moderate'),
1303
  user_prefs.exercise_time
1304
- ),
1305
- 'grooming': calculate_grooming_score(
 
 
 
 
 
 
 
 
1306
  breed_info.get('Grooming Needs', 'Moderate'),
1307
  user_prefs.grooming_commitment.lower(),
1308
  breed_info['Size']
1309
- ),
1310
- 'experience': calculate_experience_score(
 
 
 
 
 
 
 
 
1311
  breed_info.get('Care Level', 'Moderate'),
1312
  user_prefs.experience_level,
1313
  breed_info.get('Temperament', '')
1314
- ),
1315
- 'health': calculate_health_score(breed_info.get('Breed', '')),
1316
- 'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317
  }
 
 
 
1318
 
1319
- # 2. 直接識別關鍵問題
1320
- penalties = []
1321
-
1322
- # 檢查重要的不適配情況
1323
- if user_prefs.living_space == 'apartment':
1324
- if breed_info['Size'] == 'Large':
1325
- penalties.append(0.75) # 大型犬在公寓
1326
- elif breed_info['Size'] == 'Giant':
1327
- penalties.append(0.65) # 超大型犬在公寓
1328
-
1329
- if user_prefs.experience_level == 'beginner':
1330
- temperament = breed_info.get('Temperament', '').lower()
1331
- if 'stubborn' in temperament or 'dominant' in temperament:
1332
- penalties.append(0.80) # 新手配到難訓練的犬種
1333
-
1334
- # 3. 計算基礎分數
1335
- importance_factors = {
1336
- 'space': 3.0, # 空間評分的重要性提高
1337
- 'exercise': 2.0, # 運動需求次之
1338
- 'experience': 2.5, # 經驗要求很重要
1339
- 'health': 1.5, # 健康因素適中
1340
- 'grooming': 1.2, # 美容需求較次要
1341
- 'noise': 1.8 # 噪音也要考慮
1342
  }
 
 
 
1343
 
1344
- # 調整後的分數計算
1345
- adjusted_scores = []
1346
- for category, score in scores.items():
1347
- # 根據重要性調整分數
1348
- factor = importance_factors[category]
1349
 
1350
- # 分數調整:保持差異性
1351
- if score < 0.4:
1352
- adjusted = score * 0.7 # 低分更低
1353
- elif score > 0.8:
1354
- adjusted = score * 1.1 # 高分更高
1355
- else:
1356
- adjusted = score
1357
-
1358
- adjusted_scores.append(adjusted * factor)
1359
-
1360
- # 4. 計算最終分數
1361
- base_score = sum(adjusted_scores) / sum(importance_factors.values())
1362
-
1363
- # 應用懲罰(如果有)
1364
- final_score = base_score
1365
- if penalties:
1366
- final_score *= min(penalties) # 使用最嚴重的懲罰
1367
-
1368
- # 確保分數在合理範圍內
1369
- final_score = max(0.55, min(0.95, final_score))
1370
-
1371
- # 5. 準備返回結果
1372
  scores['overall'] = round(final_score, 4)
1373
- return {k: round(v, 4) for k, v in scores.items()}
 
 
 
1374
 
1375
  except Exception as e:
1376
- print(f"Error details: {str(e)}")
 
 
 
 
 
1377
  return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
 
1291
  # # print(f"Error in calculate_compatibility_score: {str(e)}")
1292
  # return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
1293
 
1294
+ #
1295
+ print("\n=== 開始計算品種相容性分數 ===")
1296
+ print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
1297
+ print(f"品種信息: {breed_info}")
1298
+ print(f"使用者偏好: {vars(user_prefs)}")
1299
+
1300
+ # 1. 計算基礎分數
1301
+ try:
1302
+ space_score = calculate_space_score(
1303
  breed_info['Size'],
1304
  user_prefs.living_space,
1305
  user_prefs.space_for_play,
1306
  breed_info.get('Exercise Needs', 'Moderate')
1307
+ )
1308
+ print(f"\n空間分數計算結果: {space_score}")
1309
+ print(f"使用參數 - Size: {breed_info['Size']}, Living Space: {user_prefs.living_space}")
1310
+ except Exception as e:
1311
+ print(f"空間分數計算錯誤: {str(e)}")
1312
+ print(f"錯誤詳情: {traceback.format_exc()}")
1313
+ raise
1314
+
1315
+ try:
1316
+ exercise_score = calculate_exercise_score(
1317
  breed_info.get('Exercise Needs', 'Moderate'),
1318
  user_prefs.exercise_time
1319
+ )
1320
+ print(f"\n運動分數計算結果: {exercise_score}")
1321
+ print(f"使用參數 - Exercise Needs: {breed_info.get('Exercise Needs', 'Moderate')}, Time: {user_prefs.exercise_time}")
1322
+ except Exception as e:
1323
+ print(f"運動分數計算錯誤: {str(e)}")
1324
+ print(f"錯誤詳情: {traceback.format_exc()}")
1325
+ raise
1326
+
1327
+ try:
1328
+ grooming_score = calculate_grooming_score(
1329
  breed_info.get('Grooming Needs', 'Moderate'),
1330
  user_prefs.grooming_commitment.lower(),
1331
  breed_info['Size']
1332
+ )
1333
+ print(f"\n美容分數計算結果: {grooming_score}")
1334
+ print(f"使用參數 - Grooming Needs: {breed_info.get('Grooming Needs', 'Moderate')}, Commitment: {user_prefs.grooming_commitment}")
1335
+ except Exception as e:
1336
+ print(f"美容分數計算錯誤: {str(e)}")
1337
+ print(f"錯誤詳情: {traceback.format_exc()}")
1338
+ raise
1339
+
1340
+ try:
1341
+ experience_score = calculate_experience_score(
1342
  breed_info.get('Care Level', 'Moderate'),
1343
  user_prefs.experience_level,
1344
  breed_info.get('Temperament', '')
1345
+ )
1346
+ print(f"\n經驗分數計算結果: {experience_score}")
1347
+ print(f"使用參數 - Care Level: {breed_info.get('Care Level', 'Moderate')}, Experience: {user_prefs.experience_level}")
1348
+ except Exception as e:
1349
+ print(f"經驗分數計算錯誤: {str(e)}")
1350
+ print(f"錯誤詳情: {traceback.format_exc()}")
1351
+ raise
1352
+
1353
+ try:
1354
+ health_score = calculate_health_score(breed_info.get('Breed', ''))
1355
+ print(f"\n健康分數計算結果: {health_score}")
1356
+ print(f"使用參數 - Breed: {breed_info.get('Breed', '')}")
1357
+ except Exception as e:
1358
+ print(f"健康分數計算錯誤: {str(e)}")
1359
+ print(f"錯誤詳情: {traceback.format_exc()}")
1360
+ raise
1361
+
1362
+ try:
1363
+ noise_score = calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
1364
+ print(f"\n噪音分數計算結果: {noise_score}")
1365
+ print(f"使用參數 - Breed: {breed_info.get('Breed', '')}, Noise Tolerance: {user_prefs.noise_tolerance}")
1366
+ except Exception as e:
1367
+ print(f"噪音分數計算錯誤: {str(e)}")
1368
+ print(f"錯誤詳情: {traceback.format_exc()}")
1369
+ raise
1370
+
1371
+ # 整合所有分數
1372
+ scores = {
1373
+ 'space': space_score,
1374
+ 'exercise': exercise_score,
1375
+ 'grooming': grooming_score,
1376
+ 'experience': experience_score,
1377
+ 'health': health_score,
1378
+ 'noise': noise_score
1379
  }
1380
+ print("\n=== 所有基礎分數 ===")
1381
+ for category, score in scores.items():
1382
+ print(f"{category}: {score}")
1383
 
1384
+ # 計算加權分數
1385
+ weights = {
1386
+ 'space': 0.28,
1387
+ 'exercise': 0.18,
1388
+ 'grooming': 0.12,
1389
+ 'experience': 0.22,
1390
+ 'health': 0.12,
1391
+ 'noise': 0.08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392
  }
1393
+
1394
+ weighted_score = sum(score * weights[category] for category, score in scores.items())
1395
+ print(f"\n加權前總分: {weighted_score}")
1396
 
1397
+ # 分數放大
1398
+ def amplify_score(score):
1399
+ print(f"\n開始分數放大,原始分數: {score}")
1400
+ adjusted = (score - 0.35) * 1.8
1401
+ print(f"調整後分數 (adjusted): {adjusted}")
1402
 
1403
+ amplified = pow(adjusted, 3.2) / 5.8 + score
1404
+ print(f"放大後分數 (amplified): {amplified}")
1405
+
1406
+ if amplified > 0.90:
1407
+ amplified = 0.90 + (amplified - 0.90) * 0.5
1408
+
1409
+ final = max(0.55, min(0.95, amplified))
1410
+ print(f"最終分數: {final}")
1411
+ return round(final, 3)
1412
+
1413
+ final_score = amplify_score(weighted_score)
1414
+ print(f"\n=== 最終計算結果 ===")
1415
+ print(f"最終分數: {final_score}")
1416
+
1417
+ # 準備返回結果
1418
+ scores = {k: round(v, 4) for k, v in scores.items()}
 
 
 
 
 
 
1419
  scores['overall'] = round(final_score, 4)
1420
+
1421
+ print("\n=== 返回結果 ===")
1422
+ print(scores)
1423
+ return scores
1424
 
1425
  except Exception as e:
1426
+ print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
1427
+ print(f"錯誤類型: {type(e).__name__}")
1428
+ print(f"錯誤訊息: {str(e)}")
1429
+ print(f"完整錯誤追蹤:")
1430
+ print(traceback.format_exc())
1431
+ print("\n返回默認值...")
1432
  return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}