DawnC commited on
Commit
7fb11b6
·
1 Parent(s): d99a5ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -15
app.py CHANGED
@@ -193,7 +193,7 @@ async def predict_single_dog(image):
193
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
194
  return top1_prob, topk_breeds, topk_probs_percent
195
 
196
- async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.5):
197
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
198
  dogs = []
199
  boxes = []
@@ -201,17 +201,25 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.5):
201
  if box.cls == 16: # COCO dataset class for dog is 16
202
  xyxy = box.xyxy[0].tolist()
203
  confidence = box.conf.item()
204
- boxes.append(xyxy)
205
 
206
  # 如果沒有檢測到狗,使用整張圖片
207
  if not boxes:
208
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
209
  else:
210
- # 合併重疊的框
211
- merged_boxes = merge_boxes(boxes)
212
- for box in merged_boxes:
213
- cropped_image = image.crop((box[0], box[1], box[2], box[3]))
214
- dogs.append((cropped_image, 1.0, box))
 
 
 
 
 
 
 
 
215
 
216
  return dogs
217
 
@@ -221,7 +229,7 @@ def merge_boxes(boxes, iou_threshold=0.5):
221
  base_box = boxes.pop(0)
222
  i = 0
223
  while i < len(boxes):
224
- if calculate_iou(base_box, boxes[i]) > iou_threshold:
225
  base_box = merge_two_boxes(base_box, boxes.pop(i))
226
  else:
227
  i += 1
@@ -242,12 +250,13 @@ def calculate_iou(box1, box2):
242
  return iou
243
 
244
  def merge_two_boxes(box1, box2):
245
- return [
246
- min(box1[0], box2[0]),
247
- min(box1[1], box2[1]),
248
- max(box1[2], box2[2]),
249
- max(box1[3], box2[3])
250
- ]
 
251
 
252
 
253
  async def process_single_dog(image):
@@ -494,7 +503,7 @@ async def predict(image):
494
  "is_multi_dog": len(dogs) > 1,
495
  "dogs_info": explanations
496
  }
497
- return final_explanation, annotated_image, gr.update(visible=true, choices=buttons), initial_state
498
  else:
499
  initial_state = {
500
  "explanation": final_explanation,
 
193
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
194
  return top1_prob, topk_breeds, topk_probs_percent
195
 
196
+ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
197
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
198
  dogs = []
199
  boxes = []
 
201
  if box.cls == 16: # COCO dataset class for dog is 16
202
  xyxy = box.xyxy[0].tolist()
203
  confidence = box.conf.item()
204
+ boxes.append((xyxy, confidence))
205
 
206
  # 如果沒有檢測到狗,使用整張圖片
207
  if not boxes:
208
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
209
  else:
210
+ # 按置信度排序並選擇前4個框(如果有的話)
211
+ sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)[:4]
212
+
213
+ for box, confidence in sorted_boxes:
214
+ x1, y1, x2, y2 = box
215
+ # 擴大框的大小
216
+ w, h = x2 - x1, y2 - y1
217
+ x1 = max(0, x1 - w * 0.1)
218
+ y1 = max(0, y1 - h * 0.1)
219
+ x2 = min(image.width, x2 + w * 0.1)
220
+ y2 = min(image.height, y2 + h * 0.1)
221
+ cropped_image = image.crop((x1, y1, x2, y2))
222
+ dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
223
 
224
  return dogs
225
 
 
229
  base_box = boxes.pop(0)
230
  i = 0
231
  while i < len(boxes):
232
+ if calculate_iou(base_box[0], boxes[i][0]) > iou_threshold:
233
  base_box = merge_two_boxes(base_box, boxes.pop(i))
234
  else:
235
  i += 1
 
250
  return iou
251
 
252
  def merge_two_boxes(box1, box2):
253
+ return (
254
+ [min(box1[0][0], box2[0][0]),
255
+ min(box1[0][1], box2[0][1]),
256
+ max(box1[0][2], box2[0][2]),
257
+ max(box1[0][3], box2[0][3])],
258
+ max(box1[1], box2[1]) # 取較高的置信度
259
+ )
260
 
261
 
262
  async def process_single_dog(image):
 
503
  "is_multi_dog": len(dogs) > 1,
504
  "dogs_info": explanations
505
  }
506
+ return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
507
  else:
508
  initial_state = {
509
  "explanation": final_explanation,