DawnC commited on
Commit
853de85
·
1 Parent(s): 2a6a6af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -76
app.py CHANGED
@@ -8,6 +8,8 @@ import torch.nn.functional as F
8
  from torchvision import transforms
9
  from PIL import Image
10
  from data_manager import get_dog_description
 
 
11
 
12
  dog_breeds = ["Afghan_Hound(阿富汗獵犬)", "African_Hunting_Dog(非洲野犬)", "Airedale(艾爾谷犬)",
13
  "American_Staffordshire_Terrier(美國斯塔福郡梗)", "Appenzeller(亞賓澤爾犬)",
@@ -139,18 +141,53 @@ def preprocess_image(image):
139
 
140
  return transform(image).unsqueeze(0)
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  def predict(image):
143
  try:
144
  image_tensor = preprocess_image(image)
145
  with torch.no_grad():
146
- logits, _ = model(image_tensor)
147
  _, predicted = torch.max(logits, 1)
148
-
149
  breed = dog_breeds[predicted.item()] # Map label to breed name
150
-
151
  # Retrieve breed description
152
  description = get_dog_description(breed)
153
-
 
 
 
 
 
 
154
  # Formatting the description for better display
155
  if isinstance(description, dict):
156
  description_str = f"**Breed**: {description['Breed']}\n\n"
@@ -164,89 +201,70 @@ def predict(image):
164
  description_str += f"**Description**: {description['Description']}\n\n"
165
  else:
166
  description_str = description
167
-
 
 
 
168
  return description_str
169
  except Exception as e:
170
  return f"An error occurred: {e}"
171
 
 
172
  iface = gr.Interface(
173
  fn=predict,
174
- inputs=gr.Image(label="Upload an image", type="numpy"), # 支持拖放和圖片編輯
175
- outputs="markdown",
176
- title="<span style='font-family:Roboto; font-weight:bold; color:#2C3E50;'>Dog Breed Classifier</span>",
177
- description="<span style='font-family:Open Sans; color:#34495E;'>Upload an image, and the system will predict the breed and provide detailed information from the database.</span>",
178
  examples=['Border_Collie.jpg',
179
  'Golden_Retriever.jpeg',
180
  'Saint_Bernard.jpeg',
181
  'French_Bulldog.jpeg',
182
  'Samoyed.jpg'],
183
- css = """
184
- /* 美化按鈕樣式 */
185
- .gr-button {
186
- background-color: #1ABC9C;
187
- color: white;
188
- border-radius: 12px;
189
- box-shadow: 0px 5px 10px rgba(0, 0, 0, 0.15);
190
- padding: 12px 24px;
191
- transition: background-color 0.3s ease, transform 0.2s ease;
192
- font-weight: bold;
193
- }
194
- .gr-button:hover {
195
- background-color: #16A085;
196
- transform: scale(1.05);
197
- }
198
-
199
- /* 美化標題 */
200
- h1, h2, h3, h4, h5 {
201
- font-family: 'Roboto', sans-serif;
202
- text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
203
- color: #2C3E50;
204
- font-weight: bold;
205
- }
206
-
207
- /* 設定背景漸層 */
208
- body {
209
- background: linear-gradient(to bottom right, #ECF0F1, #FFFFFF);
210
- overflow: hidden; /* 隱藏滾動條 */
211
- }
212
-
213
- /* 美化圖片上傳區塊 */
214
- .gr-box {
215
- background: #F9F9F9;
216
- border: 2px solid #BDC3C7;
217
- border-radius: 15px;
218
- padding: 20px;
219
- box-shadow: 0px 5px 15px rgba(0, 0, 0, 0.1);
220
- transition: box-shadow 0.3s ease;
221
- }
222
- .gr-box:hover {
223
- box-shadow: 0px 8px 20px rgba(0, 0, 0, 0.2);
224
- }
225
-
226
- /* 修改 markdown 區塊字體及行高 */
227
- .output-markdown {
228
- font-family: 'Noto Sans', sans-serif;
229
- line-height: 1.75;
230
- color: #34495E;
231
- overflow: hidden;
232
- max-height: none;
233
- }
234
-
235
- /* 調整範例圖片區塊樣式 */
236
- .examples img {
237
- border-radius: 10px;
238
- transition: transform 0.3s ease, box-shadow 0.3s ease;
239
- }
240
- .examples img:hover {
241
- transform: scale(1.05);
242
- box-shadow: 0px 5px 10px rgba(0, 0, 0, 0.15);
243
- }
244
-
245
- /* 去掉範例圖片滾動條 */
246
- .examples {
247
- overflow: hidden;
248
- }
249
- """, theme='default')
250
 
251
 
252
 
 
8
  from torchvision import transforms
9
  from PIL import Image
10
  from data_manager import get_dog_description
11
+ import wikipedia
12
+ from urllib.parse import quote
13
 
14
  dog_breeds = ["Afghan_Hound(阿富汗獵犬)", "African_Hunting_Dog(非洲野犬)", "Airedale(艾爾谷犬)",
15
  "American_Staffordshire_Terrier(美國斯塔福郡梗)", "Appenzeller(亞賓澤爾犬)",
 
141
 
142
  return transform(image).unsqueeze(0)
143
 
144
+ # def predict(image):
145
+ # try:
146
+ # image_tensor = preprocess_image(image)
147
+ # with torch.no_grad():
148
+ # logits, _ = model(image_tensor)
149
+ # _, predicted = torch.max(logits, 1)
150
+
151
+ # breed = dog_breeds[predicted.item()] # Map label to breed name
152
+
153
+ # # Retrieve breed description
154
+ # description = get_dog_description(breed)
155
+
156
+ # # Formatting the description for better display
157
+ # if isinstance(description, dict):
158
+ # description_str = f"**Breed**: {description['Breed']}\n\n"
159
+ # description_str += f"**Size**: {description['Size']}\n\n"
160
+ # description_str += f"**Lifespan**: {description['Lifespan']}\n\n"
161
+ # description_str += f"**Temperament**: {description['Temperament']}\n\n"
162
+ # description_str += f"**Care Level**: {description['Care Level']}\n\n"
163
+ # description_str += f"**Good with Children**: {description['Good with Children']}\n\n"
164
+ # description_str += f"**Exercise Needs**: {description['Exercise Needs']}\n\n"
165
+ # description_str += f"**Grooming Needs**: {description['Grooming Needs']}\n\n"
166
+ # description_str += f"**Description**: {description['Description']}\n\n"
167
+ # else:
168
+ # description_str = description
169
+
170
+ # return description_str
171
+ # except Exception as e:
172
+ # return f"An error occurred: {e}"
173
+
174
  def predict(image):
175
  try:
176
  image_tensor = preprocess_image(image)
177
  with torch.no_grad():
178
+ logits, * = model(image_tensor)
179
  _, predicted = torch.max(logits, 1)
 
180
  breed = dog_breeds[predicted.item()] # Map label to breed name
181
+
182
  # Retrieve breed description
183
  description = get_dog_description(breed)
184
+
185
+ # Generate Wikipedia link
186
+ try:
187
+ wiki_link = wikipedia.page(f"{breed} dog").url
188
+ except:
189
+ wiki_link = f"https://en.wikipedia.org/wiki/Special:Search?search={quote(breed)}+dog"
190
+
191
  # Formatting the description for better display
192
  if isinstance(description, dict):
193
  description_str = f"**Breed**: {description['Breed']}\n\n"
 
201
  description_str += f"**Description**: {description['Description']}\n\n"
202
  else:
203
  description_str = description
204
+
205
+ # Add Wikipedia link
206
+ description_str += f"\n\n[Click here to view the Wikipedia page for {breed}]({wiki_link})"
207
+
208
  return description_str
209
  except Exception as e:
210
  return f"An error occurred: {e}"
211
 
212
+
213
  iface = gr.Interface(
214
  fn=predict,
215
+ inputs=gr.Image(label="Upload a dog image", type="numpy"),
216
+ outputs=gr.Markdown(label="Prediction Results"),
217
+ title="<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>",
218
+ description="<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and AI will predict its breed, provide detailed information, and include a Wikipedia link!</p>",
219
  examples=['Border_Collie.jpg',
220
  'Golden_Retriever.jpeg',
221
  'Saint_Bernard.jpeg',
222
  'French_Bulldog.jpeg',
223
  'Samoyed.jpg'],
224
+ css = """
225
+ /* 新增樣式 */
226
+ .container {
227
+ max-width: 900px;
228
+ margin: 0 auto;
229
+ padding: 20px;
230
+ background-color: rgba(255, 255, 255, 0.9);
231
+ border-radius: 15px;
232
+ box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
233
+ }
234
+
235
+ .gr-form {
236
+ display: flex;
237
+ flex-direction: column;
238
+ align-items: center;
239
+ }
240
+
241
+ .gr-box {
242
+ width: 100%;
243
+ max-width: 500px;
244
+ }
245
+
246
+ .output-markdown, .output-image {
247
+ margin-top: 20px;
248
+ padding: 15px;
249
+ background-color: #f5f5f5;
250
+ border-radius: 10px;
251
+ }
252
+
253
+ .examples {
254
+ display: flex;
255
+ justify-content: center;
256
+ flex-wrap: wrap;
257
+ gap: 10px;
258
+ margin-top: 20px;
259
+ }
260
+
261
+ .examples img {
262
+ width: 100px;
263
+ height: 100px;
264
+ object-fit: cover;
265
+ }
266
+ """,
267
+ theme='default')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
 
269
 
270