DawnC commited on
Commit
8fa834c
·
1 Parent(s): ef667a6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -55
app.py CHANGED
@@ -176,21 +176,61 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
176
  dogs.append((cropped_image, confidence, xyxy))
177
  return dogs
178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
 
180
  async def predict(image):
181
  if image is None:
182
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
183
-
184
  try:
185
  if isinstance(image, np.ndarray):
186
  image = Image.fromarray(image)
187
-
188
  dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
189
 
190
  if len(dogs) <= 1:
191
  return await process_single_dog(image)
192
 
193
- # 多狗情境
194
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
195
  explanations = []
196
  buttons = []
@@ -223,7 +263,8 @@ async def predict(image):
223
  initial_state = {
224
  "explanation": final_explanation,
225
  "buttons": buttons,
226
- "show_back": True
 
227
  }
228
  return (final_explanation, annotated_image,
229
  buttons[0] if len(buttons) > 0 else gr.update(visible=False),
@@ -235,10 +276,10 @@ async def predict(image):
235
  initial_state = {
236
  "explanation": final_explanation,
237
  "buttons": [],
238
- "show_back": False
 
239
  }
240
  return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
241
-
242
  except Exception as e:
243
  error_msg = f"An error occurred: {str(e)}"
244
  print(error_msg) # 添加日誌輸出
@@ -397,47 +438,6 @@ async def predict(image):
397
 
398
 
399
 
400
- async def process_single_dog(image):
401
- top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
402
- if top1_prob < 0.2:
403
- initial_state = {
404
- "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
405
- "buttons": [],
406
- "show_back": False
407
- }
408
- return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
409
-
410
- breed = topk_breeds[0]
411
- description = get_dog_description(breed)
412
-
413
- if top1_prob >= 0.5:
414
- formatted_description = format_description(description, breed)
415
- initial_state = {
416
- "explanation": formatted_description,
417
- "buttons": [],
418
- "show_back": False
419
- }
420
- return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
421
- else:
422
- explanation = (
423
- f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
424
- f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
425
- f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
426
- f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
427
- "Click on a button to view more information about the breed."
428
- )
429
- buttons = [
430
- gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
431
- gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
432
- gr.update(visible=True, value=f"More about {topk_breeds[2]}")
433
- ]
434
- initial_state = {
435
- "explanation": explanation,
436
- "buttons": buttons,
437
- "show_back": True
438
- }
439
- return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
440
-
441
  def show_details(choice, previous_output, initial_state):
442
  if not choice:
443
  return previous_output, gr.update(visible=True), initial_state
@@ -446,13 +446,25 @@ def show_details(choice, previous_output, initial_state):
446
  breed = choice.split("More about ")[-1]
447
  description = get_dog_description(breed)
448
  formatted_description = format_description(description, breed)
 
449
  return formatted_description, gr.update(visible=True), initial_state
450
  except Exception as e:
451
  error_msg = f"An error occurred while showing details: {e}"
452
  print(error_msg) # 添加日誌輸出
453
  return error_msg, gr.update(visible=True), initial_state
454
 
455
- # 介面部分
 
 
 
 
 
 
 
 
 
 
 
456
  with gr.Blocks() as iface:
457
  gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
458
  gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
@@ -486,12 +498,9 @@ with gr.Blocks() as iface:
486
  )
487
 
488
  back_button.click(
489
- lambda state: (state["explanation"],
490
- state["buttons"][0] if len(state["buttons"]) > 0 else gr.update(visible=False),
491
- state["buttons"][1] if len(state["buttons"]) > 1 else gr.update(visible=False),
492
- gr.update(visible=state["show_back"])),
493
  inputs=[initial_state],
494
- outputs=[output, btn1, btn2, btn3, back_button]
495
  )
496
 
497
  gr.Examples(
@@ -501,5 +510,5 @@ with gr.Blocks() as iface:
501
 
502
  gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
503
 
504
- if __name__ == "__main__":
505
- iface.launch()
 
176
  dogs.append((cropped_image, confidence, xyxy))
177
  return dogs
178
 
179
+ async def process_single_dog(image):
180
+ top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
181
+ if top1_prob < 0.2:
182
+ initial_state = {
183
+ "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
184
+ "buttons": [],
185
+ "show_back": False,
186
+ "image": None
187
+ }
188
+ return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
189
+
190
+ breed = topk_breeds[0]
191
+ description = get_dog_description(breed)
192
+
193
+ if top1_prob >= 0.5:
194
+ formatted_description = format_description(description, breed)
195
+ initial_state = {
196
+ "explanation": formatted_description,
197
+ "buttons": [],
198
+ "show_back": False,
199
+ "image": image
200
+ }
201
+ return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
202
+ else:
203
+ explanation = (
204
+ f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
205
+ f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
206
+ f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
207
+ f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
208
+ "Click on a button to view more information about the breed."
209
+ )
210
+ buttons = [
211
+ gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
212
+ gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
213
+ gr.update(visible=True, value=f"More about {topk_breeds[2]}")
214
+ ]
215
+ initial_state = {
216
+ "explanation": explanation,
217
+ "buttons": buttons,
218
+ "show_back": True,
219
+ "image": image
220
+ }
221
+ return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
222
 
223
  async def predict(image):
224
  if image is None:
225
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
 
226
  try:
227
  if isinstance(image, np.ndarray):
228
  image = Image.fromarray(image)
 
229
  dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
230
 
231
  if len(dogs) <= 1:
232
  return await process_single_dog(image)
233
 
 
234
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
235
  explanations = []
236
  buttons = []
 
263
  initial_state = {
264
  "explanation": final_explanation,
265
  "buttons": buttons,
266
+ "show_back": True,
267
+ "image": annotated_image
268
  }
269
  return (final_explanation, annotated_image,
270
  buttons[0] if len(buttons) > 0 else gr.update(visible=False),
 
276
  initial_state = {
277
  "explanation": final_explanation,
278
  "buttons": [],
279
+ "show_back": False,
280
+ "image": annotated_image
281
  }
282
  return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
 
283
  except Exception as e:
284
  error_msg = f"An error occurred: {str(e)}"
285
  print(error_msg) # 添加日誌輸出
 
438
 
439
 
440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441
  def show_details(choice, previous_output, initial_state):
442
  if not choice:
443
  return previous_output, gr.update(visible=True), initial_state
 
446
  breed = choice.split("More about ")[-1]
447
  description = get_dog_description(breed)
448
  formatted_description = format_description(description, breed)
449
+ initial_state["explanation"] = formatted_description
450
  return formatted_description, gr.update(visible=True), initial_state
451
  except Exception as e:
452
  error_msg = f"An error occurred while showing details: {e}"
453
  print(error_msg) # 添加日誌輸出
454
  return error_msg, gr.update(visible=True), initial_state
455
 
456
+ def go_back(state):
457
+ buttons = state.get("buttons", [])
458
+ return (
459
+ state["explanation"],
460
+ state.get("image", None),
461
+ buttons[0] if len(buttons) > 0 else gr.update(visible=False),
462
+ buttons[1] if len(buttons) > 1 else gr.update(visible=False),
463
+ buttons[2] if len(buttons) > 2 else gr.update(visible=False),
464
+ gr.update(visible=state["show_back"]),
465
+ state
466
+ )
467
+
468
  with gr.Blocks() as iface:
469
  gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
470
  gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
 
498
  )
499
 
500
  back_button.click(
501
+ go_back,
 
 
 
502
  inputs=[initial_state],
503
+ outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
504
  )
505
 
506
  gr.Examples(
 
510
 
511
  gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
512
 
513
+ if __name__ == "__main__":
514
+ iface.launch()