Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -617,29 +617,30 @@ async def predict(image):
|
|
617 |
if isinstance(image, np.ndarray):
|
618 |
image = Image.fromarray(image)
|
619 |
|
|
|
|
|
|
|
|
|
|
|
620 |
dogs = await detect_multiple_dogs(image)
|
621 |
|
622 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
623 |
-
|
624 |
dogs_info = ""
|
625 |
all_breeds = set() # 使用集合來避免重複
|
626 |
-
|
627 |
-
|
628 |
-
draw = ImageDraw.Draw(annotated_image)
|
629 |
-
font = ImageFont.load_default()
|
630 |
-
|
631 |
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
632 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
633 |
color = color_list[i % len(color_list)]
|
634 |
draw.rectangle(box, outline=color, width=3)
|
635 |
draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
|
636 |
-
|
637 |
combined_confidence = detection_confidence * top1_prob
|
638 |
dogs_info += f'''
|
639 |
<div class="dog-info" style="border-left: 5px solid {color}; margin-bottom: 20px; padding: 15px; border: 1px solid #ddd; border-radius: 5px;">
|
640 |
<h2 style="background-color: #f0f0f0; padding: 10px; margin: -15px -15px 15px -15px; border-radius: 5px 5px 0 0;">Dog {i+1}</h2>
|
641 |
'''
|
642 |
-
|
643 |
if top1_prob >= 0.45:
|
644 |
breed = topk_breeds[0]
|
645 |
all_breeds.add(breed)
|
@@ -655,6 +656,7 @@ async def predict(image):
|
|
655 |
for breed in topk_breeds[:3]:
|
656 |
button_id = f"Dog {i+1}: More about {breed}"
|
657 |
dogs_info += f'<button class="breed-button" onclick="handle_button_click(\'{button_id}\')">{breed}</button>'
|
|
|
658 |
dogs_info += '</div>'
|
659 |
else:
|
660 |
dogs_info += "<p>The image is unclear or the breed is not in the dataset. Please upload a clearer image.</p>"
|
@@ -709,7 +711,6 @@ async def predict(image):
|
|
709 |
print(error_msg)
|
710 |
return error_msg, None, gr.update(visible=False, choices=[]), None
|
711 |
|
712 |
-
|
713 |
|
714 |
|
715 |
def show_details_html(choice, previous_output, initial_state):
|
|
|
617 |
if isinstance(image, np.ndarray):
|
618 |
image = Image.fromarray(image)
|
619 |
|
620 |
+
# 創建一個新的圖像副本用於註釋
|
621 |
+
annotated_image = image.copy()
|
622 |
+
draw = ImageDraw.Draw(annotated_image)
|
623 |
+
font = ImageFont.load_default()
|
624 |
+
|
625 |
dogs = await detect_multiple_dogs(image)
|
626 |
|
627 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
|
|
628 |
dogs_info = ""
|
629 |
all_breeds = set() # 使用集合來避免重複
|
630 |
+
buttons = [] # 初始化 buttons 列表
|
631 |
+
|
|
|
|
|
|
|
632 |
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
633 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
634 |
color = color_list[i % len(color_list)]
|
635 |
draw.rectangle(box, outline=color, width=3)
|
636 |
draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
|
637 |
+
|
638 |
combined_confidence = detection_confidence * top1_prob
|
639 |
dogs_info += f'''
|
640 |
<div class="dog-info" style="border-left: 5px solid {color}; margin-bottom: 20px; padding: 15px; border: 1px solid #ddd; border-radius: 5px;">
|
641 |
<h2 style="background-color: #f0f0f0; padding: 10px; margin: -15px -15px 15px -15px; border-radius: 5px 5px 0 0;">Dog {i+1}</h2>
|
642 |
'''
|
643 |
+
|
644 |
if top1_prob >= 0.45:
|
645 |
breed = topk_breeds[0]
|
646 |
all_breeds.add(breed)
|
|
|
656 |
for breed in topk_breeds[:3]:
|
657 |
button_id = f"Dog {i+1}: More about {breed}"
|
658 |
dogs_info += f'<button class="breed-button" onclick="handle_button_click(\'{button_id}\')">{breed}</button>'
|
659 |
+
buttons.append(button_id)
|
660 |
dogs_info += '</div>'
|
661 |
else:
|
662 |
dogs_info += "<p>The image is unclear or the breed is not in the dataset. Please upload a clearer image.</p>"
|
|
|
711 |
print(error_msg)
|
712 |
return error_msg, None, gr.update(visible=False, choices=[]), None
|
713 |
|
|
|
714 |
|
715 |
|
716 |
def show_details_html(choice, previous_output, initial_state):
|