DawnC commited on
Commit
bab4e95
1 Parent(s): da76b43

Update scoring_calculation_system.py

Browse files
Files changed (1) hide show
  1. scoring_calculation_system.py +93 -50
scoring_calculation_system.py CHANGED
@@ -2185,14 +2185,14 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
2185
 
2186
  def calculate_base_score(scores: dict, weights: dict) -> float:
2187
  """
2188
- 計算基礎分數,降低懲罰力度,允許某些維度有較低分數
2189
  """
2190
- # 調整關鍵指標閾值,降低要求
2191
  critical_thresholds = {
2192
- 'space': 0.6, # 從0.7降低到0.6
2193
- 'exercise': 0.6, # 從0.7降低到0.6
2194
- 'experience': 0.6,# 從0.7降低到0.6
2195
- 'noise': 0.6 # 從0.65降低到0.6
2196
  }
2197
 
2198
  critical_failures = []
@@ -2203,37 +2203,46 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
2203
  # 計算基礎加權分數
2204
  base_score = sum(scores[k] * weights[k] for k in scores.keys())
2205
 
2206
- # 降低懲罰程度
2207
  if critical_failures:
2208
- # 降低最嚴重不足的懲罰影響
2209
- worst_failure = min(score for _, score in critical_failures)
2210
- penalty = (critical_thresholds['space'] - worst_failure) * 0.4 # 從0.6降到0.4
2211
- base_score *= (1 - penalty)
 
 
 
 
 
 
 
 
 
 
 
2212
 
2213
- # 降低多重失敗的懲罰
2214
  if len(critical_failures) > 1:
2215
- base_score *= (0.95 ** (len(critical_failures) - 1)) # 從0.9提升到0.95
2216
 
2217
  return base_score
2218
 
2219
 
2220
  def evaluate_condition_interactions(scores: dict) -> float:
2221
  """
2222
- 評估不同條件間的相互影響,移除對空間與運動組合的懲罰
2223
  """
2224
  interaction_penalty = 1.0
2225
 
2226
- # 經驗等級與其他因素的互動
2227
  if user_prefs.experience_level == 'beginner':
2228
  if breed_info.get('Care Level') == 'HIGH':
2229
- interaction_penalty *= 0.9
2230
- if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
2231
- interaction_penalty *= 0.9
2232
 
2233
- # 運動時間與類型的基本互動
2234
  exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
2235
  if exercise_needs == 'VERY HIGH' and user_prefs.exercise_type == 'light_walks':
2236
- interaction_penalty *= 0.9
2237
 
2238
  return interaction_penalty
2239
 
@@ -2315,51 +2324,85 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
2315
  min_possible_score = 0.3
2316
 
2317
  return min(max_possible_score, max(min_possible_score, final_score))
2318
-
2319
 
2320
  def amplify_score_extreme(score: float) -> float:
2321
  """
2322
- - 完美匹配可達到95-99%
2323
- - 優秀匹配在90-95%
2324
- - 良好匹配在85-90%
2325
- - 一般匹配在75-85%
2326
- - 較差匹配在65-75%
2327
- - 極差匹配在50-65%
2328
  """
2329
- def smooth_curve(x: float, steepness: float = 12) -> float:
2330
- """使用sigmoid curve"""
2331
- import math
2332
- return 1 / (1 + math.exp(-steepness * (x - 0.5)))
2333
-
2334
  if score >= 0.9:
2335
- # 完美匹配:95-99%
2336
  position = (score - 0.9) / 0.1
2337
- return 0.95 + (position * 0.04)
2338
 
2339
  elif score >= 0.8:
2340
- # 優秀匹配:90-95%
2341
  position = (score - 0.8) / 0.1
2342
- return 0.90 + (position * 0.05)
2343
 
2344
  elif score >= 0.7:
2345
- # 良好匹配:85-90%
2346
  position = (score - 0.7) / 0.1
2347
- return 0.85 + (position * 0.05)
2348
 
2349
  elif score >= 0.5:
2350
- # 一般匹配:75-85%
2351
  position = (score - 0.5) / 0.2
2352
- base = 0.75
2353
- return base + (smooth_curve(position) * 0.10)
2354
 
2355
- elif score >= 0.3:
2356
- # 較差匹配:65-75%
2357
- position = (score - 0.3) / 0.2
2358
- base = 0.65
2359
  return base + (smooth_curve(position) * 0.10)
2360
 
2361
- else:
2362
- # 極差匹配:50-65%
2363
- position = score / 0.3
2364
- base = 0.50
2365
- return base + (smooth_curve(position) * 0.15)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2185
 
2186
  def calculate_base_score(scores: dict, weights: dict) -> float:
2187
  """
2188
+ 計算基礎分數,更寬容地處理極端組合
2189
  """
2190
+ # 進一步降低關鍵指標閾值,使系統更包容極端組合
2191
  critical_thresholds = {
2192
+ 'space': 0.5,
2193
+ 'exercise': 0.5,
2194
+ 'experience': 0.6,# 重要的安全考量
2195
+ 'noise': 0.6 # 影響生活品質
2196
  }
2197
 
2198
  critical_failures = []
 
2203
  # 計算基礎加權分數
2204
  base_score = sum(scores[k] * weights[k] for k in scores.keys())
2205
 
2206
+ # 降低懲罰程度,特別是對空間和運動的組合
2207
  if critical_failures:
2208
+ # 分開處理不同類型的失敗
2209
+ space_exercise_penalty = 0
2210
+ other_penalty = 0
2211
+
2212
+ for metric, score in critical_failures:
2213
+ if metric in ['space', 'exercise']:
2214
+ # 空間和運動相關的失敗給予更溫和的懲罰
2215
+ space_exercise_penalty += (critical_thresholds[metric] - score) * 0.2
2216
+ else:
2217
+ # 其他失敗維持原有懲罰程度
2218
+ other_penalty += (critical_thresholds[metric] - score) * 0.4
2219
+
2220
+ # 應用懲罰時更有彈性
2221
+ total_penalty = (space_exercise_penalty + other_penalty) / 2
2222
+ base_score *= (1 - total_penalty)
2223
 
2224
+ # 進一步降低多重失敗的懲罰
2225
  if len(critical_failures) > 1:
2226
+ base_score *= (0.97 ** (len(critical_failures) - 1))
2227
 
2228
  return base_score
2229
 
2230
 
2231
  def evaluate_condition_interactions(scores: dict) -> float:
2232
  """
2233
+ 評估不同條件間的相互影響,更寬容地處理極端組合
2234
  """
2235
  interaction_penalty = 1.0
2236
 
2237
+ # 只保留最基本的經驗相關評估
2238
  if user_prefs.experience_level == 'beginner':
2239
  if breed_info.get('Care Level') == 'HIGH':
2240
+ interaction_penalty *= 0.95
 
 
2241
 
2242
+ # 運動時間與類型的基本互動也降低懲罰程度
2243
  exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
2244
  if exercise_needs == 'VERY HIGH' and user_prefs.exercise_type == 'light_walks':
2245
+ interaction_penalty *= 0.95
2246
 
2247
  return interaction_penalty
2248
 
 
2324
  min_possible_score = 0.3
2325
 
2326
  return min(max_possible_score, max(min_possible_score, final_score))
2327
+
2328
 
2329
  def amplify_score_extreme(score: float) -> float:
2330
  """
2331
+ 優化分數分布:
2332
+ - 提高高分的區別度
2333
+ - 維持低分的合理性
 
 
 
2334
  """
 
 
 
 
 
2335
  if score >= 0.9:
2336
+ # 完美匹配:92-99%
2337
  position = (score - 0.9) / 0.1
2338
+ return 0.92 + (position * 0.07)
2339
 
2340
  elif score >= 0.8:
2341
+ # 優秀匹配:85-92%
2342
  position = (score - 0.8) / 0.1
2343
+ return 0.85 + (position * 0.07)
2344
 
2345
  elif score >= 0.7:
2346
+ # 良好匹配:78-85%
2347
  position = (score - 0.7) / 0.1
2348
+ return 0.78 + (position * 0.07)
2349
 
2350
  elif score >= 0.5:
2351
+ # 一般匹配:70-78%
2352
  position = (score - 0.5) / 0.2
2353
+ base = 0.70
2354
+ return base + (smooth_curve(position) * 0.08)
2355
 
2356
+ else:
2357
+ # 較差匹配:60-70%
2358
+ position = score / 0.5
2359
+ base = 0.60
2360
  return base + (smooth_curve(position) * 0.10)
2361
 
2362
+
2363
+ # def amplify_score_extreme(score: float) -> float:
2364
+ # """
2365
+ # - 完美匹配可達到95-99%
2366
+ # - 優秀匹配在90-95%
2367
+ # - 良好匹配在85-90%
2368
+ # - 一般匹配在75-85%
2369
+ # - 較差匹配在65-75%
2370
+ # - 極差匹配在50-65%
2371
+ # """
2372
+ # def smooth_curve(x: float, steepness: float = 12) -> float:
2373
+ # """使用sigmoid curve"""
2374
+ # import math
2375
+ # return 1 / (1 + math.exp(-steepness * (x - 0.5)))
2376
+
2377
+ # if score >= 0.9:
2378
+ # # 完美匹配:95-99%
2379
+ # position = (score - 0.9) / 0.1
2380
+ # return 0.95 + (position * 0.04)
2381
+
2382
+ # elif score >= 0.8:
2383
+ # # 優秀匹配:90-95%
2384
+ # position = (score - 0.8) / 0.1
2385
+ # return 0.90 + (position * 0.05)
2386
+
2387
+ # elif score >= 0.7:
2388
+ # # 良好匹配:85-90%
2389
+ # position = (score - 0.7) / 0.1
2390
+ # return 0.85 + (position * 0.05)
2391
+
2392
+ # elif score >= 0.5:
2393
+ # # 一般匹配:75-85%
2394
+ # position = (score - 0.5) / 0.2
2395
+ # base = 0.75
2396
+ # return base + (smooth_curve(position) * 0.10)
2397
+
2398
+ # elif score >= 0.3:
2399
+ # # 較差匹配:65-75%
2400
+ # position = (score - 0.3) / 0.2
2401
+ # base = 0.65
2402
+ # return base + (smooth_curve(position) * 0.10)
2403
+
2404
+ # else:
2405
+ # # 極差匹配:50-65%
2406
+ # position = score / 0.3
2407
+ # base = 0.50
2408
+ # return base + (smooth_curve(position) * 0.15)