DawnC commited on
Commit
c024f12
·
1 Parent(s): 7029ed1

Update scoring_calculation_system.py

Browse files
Files changed (1) hide show
  1. scoring_calculation_system.py +62 -47
scoring_calculation_system.py CHANGED
@@ -1460,65 +1460,80 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
1460
 
1461
  return min(0.2, adaptability_score)
1462
 
1463
- def calculate_final_weighted_score(scores: dict, user_prefs: UserPreferences,
1464
- breed_info: dict, adaptability_bonus: float) -> float:
1465
- """計算最終加權分數"""
 
 
 
 
 
 
 
1466
  base_weights = {
1467
- 'space': 0.30,
1468
- 'exercise': 0.25,
1469
  'grooming': 0.15,
1470
- 'experience': 0.15,
1471
  'health': 0.10,
1472
- 'noise': 0.05
1473
  }
1474
 
1475
- # 根據居住環境動態調整權重
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476
  if user_prefs.living_space == 'apartment':
1477
- base_weights['space'] *= 1.4
1478
- base_weights['noise'] *= 1.3
1479
- base_weights['exercise'] *= 0.8
1480
- elif user_prefs.living_space == 'house_large':
1481
- base_weights['exercise'] *= 1.3
1482
- base_weights['space'] *= 0.9
1483
- base_weights['noise'] *= 0.8
1484
-
1485
- # 根據經驗等級調整權重
1486
- if user_prefs.experience_level == 'beginner':
1487
- base_weights['experience'] *= 1.5
1488
- base_weights['health'] *= 1.2
1489
- elif user_prefs.experience_level == 'advanced':
1490
- base_weights['exercise'] *= 1.2
1491
- base_weights['experience'] *= 0.8
1492
-
1493
- if user_prefs.exercise_time > 120: # 高運動時間
1494
- base_weights['exercise'] *= 1.5
1495
- base_weights['space'] *= 1.3
1496
- elif user_prefs.exercise_time < 45: # 低運動時間
1497
- base_weights['exercise'] *= 0.7
1498
- base_weights['health'] *= 1.2
1499
-
1500
- # 有孩童時的特殊調整
1501
- if user_prefs.has_children:
1502
- base_weights['noise'] *= 1.3
1503
- base_weights['health'] *= 1.2
1504
-
1505
- # 重新正規化權重
1506
- total_weight = sum(base_weights.values())
1507
- weights = {k: v/total_weight for k, v in base_weights.items()}
1508
-
1509
- # 計算基礎加權分數
1510
- weighted_base = sum(score * weights[category] for category, score in scores.items())
1511
 
1512
  # 品種特性加成
1513
  breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
1514
 
1515
- # 計算最終分數
1516
- final_score = (weighted_base * 0.75) + (breed_bonus * 0.15) + (adaptability_bonus * 0.10)
 
 
 
 
 
 
 
1517
 
1518
- # 擴大分數範圍
1519
- amplified_score = amplify_score_range(final_score)
1520
 
1521
- return round(amplified_score, 4)
1522
 
1523
  def amplify_score_range(score: float) -> float:
1524
  """擴大分數範圍,使差異更明顯"""
 
1460
 
1461
  return min(0.2, adaptability_score)
1462
 
1463
+ def calculate_final_weighted_score(
1464
+ scores: dict,
1465
+ user_prefs: UserPreferences,
1466
+ breed_info: dict,
1467
+ adaptability_bonus: float
1468
+ ) -> float:
1469
+ """
1470
+ 計算最終加權分數,強化條件變化的影響力
1471
+ """
1472
+ # 基礎權重設定 - 更極端化
1473
  base_weights = {
1474
+ 'space': 0.30, # 提高空間權重
1475
+ 'exercise': 0.25, # 提高運動權重
1476
  'grooming': 0.15,
1477
+ 'experience': 0.15,
1478
  'health': 0.10,
1479
+ 'noise': 0.05
1480
  }
1481
 
1482
+ # 條件特殊化加權
1483
+ special_conditions = 0.0
1484
+
1485
+ # 1. 極端條件加權
1486
+ if user_prefs.noise_tolerance == 'low':
1487
+ if scores['noise'] < 0.7: # 對低噪音容忍度更嚴格
1488
+ special_conditions -= 0.15
1489
+
1490
+ if user_prefs.grooming_commitment == 'high':
1491
+ if breed_info.get('Grooming Needs', '').upper() == 'HIGH':
1492
+ special_conditions += 0.12 # 獎勵高美容需求品種
1493
+
1494
+ # 2. 專業度差異化
1495
+ if user_prefs.experience_level == 'advanced':
1496
+ if breed_info.get('Care Level', '').upper() == 'HIGH':
1497
+ special_conditions += 0.15 # 資深者配高難度品種加分
1498
+ elif breed_info.get('Care Level', '').upper() == 'LOW':
1499
+ special_conditions -= 0.10 # 資深者配低難度品種扣分
1500
+
1501
+ # 3. 居住環境極端匹配
1502
  if user_prefs.living_space == 'apartment':
1503
+ if breed_info.get('Size', '') == 'Large':
1504
+ special_conditions -= 0.20 # 大型犬在公寓嚴重扣分
1505
+ elif breed_info.get('Size', '') == 'Small':
1506
+ special_conditions += 0.10 # 小型犬在公寓額外加分
1507
+
1508
+ # 4. 品種特色加權
1509
+ breed_traits = breed_info.get('Temperament', '').lower()
1510
+ description = breed_info.get('Description', '').lower()
1511
+
1512
+ if user_prefs.exercise_time > 120: # 高運動量使用者
1513
+ if 'athletic' in breed_traits or 'energetic' in breed_traits:
1514
+ special_conditions += 0.15
1515
+ elif user_prefs.exercise_time < 45: # 低運動量使用者
1516
+ if 'calm' in breed_traits or 'lazy' in breed_traits:
1517
+ special_conditions += 0.12
1518
+
1519
+ # 重新計算加權總分
1520
+ weighted_base = sum(score * base_weights[category] for category, score in scores.items())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521
 
1522
  # 品種特性加成
1523
  breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
1524
 
1525
+ # 最終分數計算 - 加大特殊條件的影響
1526
+ final_score = (weighted_base * 0.65) + (breed_bonus * 0.15) +
1527
+ (adaptability_bonus * 0.10) + (special_conditions * 0.10)
1528
+
1529
+ # 分數放大,使差異更明顯
1530
+ if final_score > 0.8:
1531
+ final_score = 0.8 + (final_score - 0.8) * 1.5
1532
+ elif final_score < 0.6:
1533
+ final_score = 0.6 - (0.6 - final_score) * 1.5
1534
 
1535
+ return round(min(0.95, max(0.45, final_score)), 4)
 
1536
 
 
1537
 
1538
  def amplify_score_range(score: float) -> float:
1539
  """擴大分數範圍,使差異更明顯"""