DawnC commited on
Commit
c63a248
·
verified ·
1 Parent(s): 0df9d3f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -10
app.py CHANGED
@@ -167,37 +167,98 @@ async def predict_single_dog(image):
167
  return top1_prob, topk_breeds, topk_probs_percent
168
 
169
 
170
- async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
172
  dogs = []
173
  boxes = []
 
174
  for box in results.boxes:
175
  if box.cls == 16: # COCO dataset class for dog is 16
176
  xyxy = box.xyxy[0].tolist()
177
  confidence = box.conf.item()
178
  boxes.append((xyxy, confidence))
179
-
 
180
  if not boxes:
181
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
182
  else:
183
  nms_boxes = non_max_suppression(boxes, iou_threshold)
184
 
 
185
  for box, confidence in nms_boxes:
186
  x1, y1, x2, y2 = box
187
  w, h = x2 - x1, y2 - y1
188
- x1 = max(0, x1 - w * 0.05)
189
- y1 = max(0, y1 - h * 0.05)
190
- x2 = min(image.width, x2 + w * 0.05)
191
- y2 = min(image.height, y2 + h * 0.05)
 
 
 
 
 
 
192
  cropped_image = image.crop((x1, y1, x2, y2))
193
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
194
-
195
- return dogs
196
 
 
197
 
198
- def non_max_suppression(boxes, iou_threshold):
 
199
  keep = []
200
- boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
 
201
  while boxes:
202
  current = boxes.pop(0)
203
  keep.append(current)
@@ -210,14 +271,17 @@ def calculate_iou(box1, box2):
210
  x2 = min(box1[2], box2[2])
211
  y2 = min(box1[3], box2[3])
212
 
 
213
  intersection = max(0, x2 - x1) * max(0, y2 - y1)
214
  area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
215
  area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
216
 
 
217
  iou = intersection / float(area1 + area2 - intersection)
218
  return iou
219
 
220
 
 
221
  async def process_single_dog(image):
222
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
223
  if top1_prob < 0.2:
 
167
  return top1_prob, topk_breeds, topk_probs_percent
168
 
169
 
170
+ # async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
171
+ # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
172
+ # dogs = []
173
+ # boxes = []
174
+ # for box in results.boxes:
175
+ # if box.cls == 16: # COCO dataset class for dog is 16
176
+ # xyxy = box.xyxy[0].tolist()
177
+ # confidence = box.conf.item()
178
+ # boxes.append((xyxy, confidence))
179
+
180
+ # if not boxes:
181
+ # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
182
+ # else:
183
+ # nms_boxes = non_max_suppression(boxes, iou_threshold)
184
+
185
+ # for box, confidence in nms_boxes:
186
+ # x1, y1, x2, y2 = box
187
+ # w, h = x2 - x1, y2 - y1
188
+ # x1 = max(0, x1 - w * 0.05)
189
+ # y1 = max(0, y1 - h * 0.05)
190
+ # x2 = min(image.width, x2 + w * 0.05)
191
+ # y2 = min(image.height, y2 + h * 0.05)
192
+ # cropped_image = image.crop((x1, y1, x2, y2))
193
+ # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
194
+
195
+ # return dogs
196
+
197
+
198
+ # def non_max_suppression(boxes, iou_threshold):
199
+ # keep = []
200
+ # boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
201
+ # while boxes:
202
+ # current = boxes.pop(0)
203
+ # keep.append(current)
204
+ # boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
205
+ # return keep
206
+
207
+ # def calculate_iou(box1, box2):
208
+ # x1 = max(box1[0], box2[0])
209
+ # y1 = max(box1[1], box2[1])
210
+ # x2 = min(box1[2], box2[2])
211
+ # y2 = min(box1[3], box2[3])
212
+
213
+ # intersection = max(0, x2 - x1) * max(0, y2 - y1)
214
+ # area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
215
+ # area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
216
+
217
+ # iou = intersection / float(area1 + area2 - intersection)
218
+ # return iou
219
+
220
+
221
+ async def detect_multiple_dogs(image, conf_threshold=0.15, iou_threshold=0.3):
222
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
223
  dogs = []
224
  boxes = []
225
+
226
  for box in results.boxes:
227
  if box.cls == 16: # COCO dataset class for dog is 16
228
  xyxy = box.xyxy[0].tolist()
229
  confidence = box.conf.item()
230
  boxes.append((xyxy, confidence))
231
+
232
+ # 如果沒有檢測到任何狗
233
  if not boxes:
234
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
235
  else:
236
  nms_boxes = non_max_suppression(boxes, iou_threshold)
237
 
238
+ # 進一步優化處理重疊框邏輯
239
  for box, confidence in nms_boxes:
240
  x1, y1, x2, y2 = box
241
  w, h = x2 - x1, y2 - y1
242
+
243
+ # 計算高度和寬度的比率,如果比例異常,則認定為重疊框需要拆分
244
+ aspect_ratio = h / w if w != 0 else 1
245
+ if aspect_ratio > 1.5 or aspect_ratio < 0.5:
246
+ # 假設重疊度過高,可以進一步裁切框
247
+ x1 = max(0, x1 - w * 0.05)
248
+ y1 = max(0, y1 - h * 0.05)
249
+ x2 = min(image.width, x2 + w * 0.05)
250
+ y2 = min(image.height, y2 + h * 0.05)
251
+
252
  cropped_image = image.crop((x1, y1, x2, y2))
253
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
 
 
254
 
255
+ return dogs
256
 
257
+ # 增加一個優化的non_max_suppression版本
258
+ def non_max_suppression(boxes, iou_threshold=0.3):
259
  keep = []
260
+ boxes = sorted(boxes, key=lambda x: x[1], reverse=True) # 按信心分數排序
261
+
262
  while boxes:
263
  current = boxes.pop(0)
264
  keep.append(current)
 
271
  x2 = min(box1[2], box2[2])
272
  y2 = min(box1[3], box2[3])
273
 
274
+ # 計算交集面積
275
  intersection = max(0, x2 - x1) * max(0, y2 - y1)
276
  area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
277
  area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
278
 
279
+ # 計算IOU
280
  iou = intersection / float(area1 + area2 - intersection)
281
  return iou
282
 
283
 
284
+
285
  async def process_single_dog(image):
286
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
287
  if top1_prob < 0.2: