Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -204,6 +204,29 @@ def get_akc_breeds_link():
|
|
204 |
# except Exception as e:
|
205 |
# return f"An error occurred: {e}"
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
def predict(image):
|
208 |
try:
|
209 |
image_tensor = preprocess_image(image)
|
@@ -214,80 +237,37 @@ def predict(image):
|
|
214 |
else:
|
215 |
logits = output
|
216 |
|
217 |
-
# 取得預測的top k結果
|
218 |
probabilities = F.softmax(logits, dim=1)
|
219 |
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
220 |
-
|
221 |
-
# 檢查最高的預測機率
|
222 |
top1_prob = topk_probs[0][0].item()
|
223 |
|
224 |
-
# 假設低於 20% 機率為非狗或不確定的圖片
|
225 |
if top1_prob < 0.2:
|
226 |
-
return
|
227 |
-
"The model couldn't confidently identify a dog breed. "
|
228 |
-
"It seems like the image may not contain a dog, or the image quality is too low. "
|
229 |
-
"Please upload a clearer picture or ensure the subject is a dog."
|
230 |
-
)
|
231 |
|
232 |
-
# 當信心高於 50% 時,直接返回該品種資訊
|
233 |
if top1_prob >= 0.5:
|
234 |
predicted = topk_indices[0][0]
|
235 |
breed = dog_breeds[predicted.item()]
|
236 |
return get_breed_info(breed)
|
237 |
|
238 |
else:
|
239 |
-
#
|
240 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
241 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
242 |
|
243 |
-
#
|
244 |
-
|
245 |
-
|
246 |
-
for i, (breed, prob) in enumerate(zip(topk_breeds, topk_probs_percent))]
|
247 |
-
)
|
248 |
|
249 |
-
|
250 |
-
explanation = (
|
251 |
-
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n{topk_results}\n\n"
|
252 |
-
"This can happen if the image quality is low or the breed is rare in the dataset. "
|
253 |
-
"Please try uploading a clearer image or a different angle of the dog. "
|
254 |
-
"For more accurate results, ensure the dog is the main subject of the photo."
|
255 |
-
)
|
256 |
-
|
257 |
-
return explanation
|
258 |
|
259 |
except Exception as e:
|
260 |
return f"An error occurred: {e}"
|
261 |
|
262 |
-
def get_breed_info(breed):
|
263 |
-
"""
|
264 |
-
返回指定狗品種的詳細資訊,類似於 >=50% 信心時的結果。
|
265 |
-
"""
|
266 |
-
description = get_dog_description(breed)
|
267 |
-
akc_link = get_akc_breeds_link()
|
268 |
-
|
269 |
-
if isinstance(description, dict):
|
270 |
-
description_str = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
271 |
-
else:
|
272 |
-
description_str = description
|
273 |
-
|
274 |
-
# 添加AKC連結
|
275 |
-
description_str += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
|
276 |
-
|
277 |
-
# 添加免責聲明
|
278 |
-
disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
|
279 |
-
"You may need to search for the specific breed on that page. "
|
280 |
-
"I am not responsible for the content on external sites. "
|
281 |
-
"Please refer to the AKC's terms of use and privacy policy.*")
|
282 |
-
description_str += disclaimer
|
283 |
-
|
284 |
-
return description_str
|
285 |
-
|
286 |
|
287 |
iface = gr.Interface(
|
288 |
fn=predict,
|
289 |
inputs=gr.Image(label="Upload a dog image", type="numpy"),
|
290 |
-
outputs=gr.Markdown(label="Prediction Results"),
|
291 |
title="<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>",
|
292 |
article= 'For more details on this project and other work, feel free to visit my GitHub [Dog Breed Classifier](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier)',
|
293 |
description="<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and model will predict its breed, provide detailed information, and include an extra information link!</p>",
|
|
|
204 |
# except Exception as e:
|
205 |
# return f"An error occurred: {e}"
|
206 |
|
207 |
+
# 返回特定狗品種的描述函數
|
208 |
+
def get_breed_info(breed):
|
209 |
+
description = get_dog_description(breed)
|
210 |
+
akc_link = get_akc_breeds_link()
|
211 |
+
|
212 |
+
if isinstance(description, dict):
|
213 |
+
description_str = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
214 |
+
else:
|
215 |
+
description_str = description
|
216 |
+
|
217 |
+
# 添加AKC連結
|
218 |
+
description_str += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
|
219 |
+
|
220 |
+
# 添加免責聲明
|
221 |
+
disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
|
222 |
+
"You may need to search for the specific breed on that page. "
|
223 |
+
"I am not responsible for the content on external sites. "
|
224 |
+
"Please refer to the AKC's terms of use and privacy policy.*")
|
225 |
+
description_str += disclaimer
|
226 |
+
|
227 |
+
return description_str
|
228 |
+
|
229 |
+
# 原始的預測函數,增加了按鈕來觸發品種描述的顯示
|
230 |
def predict(image):
|
231 |
try:
|
232 |
image_tensor = preprocess_image(image)
|
|
|
237 |
else:
|
238 |
logits = output
|
239 |
|
|
|
240 |
probabilities = F.softmax(logits, dim=1)
|
241 |
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
|
|
|
|
242 |
top1_prob = topk_probs[0][0].item()
|
243 |
|
|
|
244 |
if top1_prob < 0.2:
|
245 |
+
return "The image does not appear to be a dog. Please upload a clearer or different dog image."
|
|
|
|
|
|
|
|
|
246 |
|
|
|
247 |
if top1_prob >= 0.5:
|
248 |
predicted = topk_indices[0][0]
|
249 |
breed = dog_breeds[predicted.item()]
|
250 |
return get_breed_info(breed)
|
251 |
|
252 |
else:
|
253 |
+
# 如果模型無法確定,列出 top 3 品種按鈕
|
254 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
255 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
256 |
|
257 |
+
# 用按鈕來返回品種描述
|
258 |
+
buttons = [gr.Button(f"Click here to view more about {breed} ({prob})", variant="primary")
|
259 |
+
for breed, prob in zip(topk_breeds, topk_probs_percent)]
|
|
|
|
|
260 |
|
261 |
+
return f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:", buttons
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
except Exception as e:
|
264 |
return f"An error occurred: {e}"
|
265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
iface = gr.Interface(
|
268 |
fn=predict,
|
269 |
inputs=gr.Image(label="Upload a dog image", type="numpy"),
|
270 |
+
outputs=[gr.Markdown(label="Prediction Results"), gr.Component(type="button")],
|
271 |
title="<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>",
|
272 |
article= 'For more details on this project and other work, feel free to visit my GitHub [Dog Breed Classifier](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier)',
|
273 |
description="<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and model will predict its breed, provide detailed information, and include an extra information link!</p>",
|