DawnC commited on
Commit
ceeda4e
·
1 Parent(s): a252791

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -37
app.py CHANGED
@@ -303,29 +303,27 @@ def _detect_multiple_dogs(image, conf_threshold):
303
 
304
  async def predict(image):
305
  if image is None:
306
- return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
307
 
308
  try:
309
  if isinstance(image, np.ndarray):
310
  image = Image.fromarray(image)
311
 
312
  # 嘗試檢測多隻狗
313
- dogs = await detect_multiple_dogs(image) # 使用 YOLO 檢測多狗
314
  if len(dogs) == 0:
315
- # 單狗情境 - 不使用 YOLO,直接進行單狗預測
316
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
317
  if top1_prob < 0.2:
318
- return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
319
 
320
  breed = topk_breeds[0]
321
  description = get_dog_description(breed)
322
- formatted_description = format_description(description, breed)
323
 
324
- # 如果置信度高於 0.5,返回結果
325
  if top1_prob >= 0.5:
326
- return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
 
327
  else:
328
- # 如果置信度不足,顯示前三個可能的品種
329
  explanation = (
330
  f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
331
  f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
@@ -333,13 +331,13 @@ async def predict(image):
333
  f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
334
  "Click on a button to view more information about the breed."
335
  )
336
- # 返回可選擇的按鈕以顯示詳細資訊
337
- return explanation, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
338
 
339
- # 多狗情境 - 使用 YOLO 偵測並處理多狗
340
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
341
  explanations = []
342
- visible_buttons = []
343
  annotated_image = image.copy()
344
  draw = ImageDraw.Draw(annotated_image)
345
  font = ImageFont.load_default()
@@ -352,24 +350,28 @@ async def predict(image):
352
 
353
  if top1_prob >= 0.5:
354
  breed = topk_breeds[0]
355
- description = get_dog_description(breed)
356
- explanations.append(f"Dog {i+1}:\n{format_description(description, breed)}")
 
 
 
 
 
 
357
  else:
358
  explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
359
 
360
  final_explanation = "\n\n".join(explanations)
361
- return final_explanation, annotated_image, gr.update(visible=True, choices=visible_buttons), gr.update(visible=False), gr.update(visible=False)
362
 
363
  except Exception as e:
364
- return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible(False))
365
-
366
 
367
  async def show_details(choice):
368
  if not choice:
369
  return "Please select a breed to view details."
370
 
371
  try:
372
- # 解析出用戶選擇��品種
373
  if "Dog" in choice:
374
  _, breed = choice.split(": ", 1)
375
  else:
@@ -379,17 +381,7 @@ async def show_details(choice):
379
  except Exception as e:
380
  return f"An error occurred while showing details: {e}"
381
 
382
-
383
-
384
-
385
- with gr.Blocks(css="""
386
- .container { max-width: 900px; margin: auto; padding: 20px; }
387
- .gr-box { border-radius: 15px; }
388
- .output-markdown { margin-top: 20px; padding: 15px; background-color: #f5f5f5; border-radius: 10px; }
389
- .examples { display: flex; justify-content: center; flex-wrap: wrap; gap: 10px; margin-top: 20px; }
390
- .examples img { width: 100px; height: 100px; object-fit: cover; }
391
- """) as iface:
392
-
393
  gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
394
  gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
395
 
@@ -401,14 +393,8 @@ with gr.Blocks(css="""
401
  breed_buttons = gr.Radio([], label="Select breed for more details", visible=False)
402
  breed_details = gr.Markdown(label="Breed Details")
403
 
404
- async def safe_predict(image):
405
- try:
406
- return await predict(image)
407
- except Exception as e:
408
- return str(e), None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
409
-
410
  input_image.change(
411
- safe_predict,
412
  inputs=input_image,
413
  outputs=[output, output_image, breed_buttons, breed_details]
414
  )
@@ -424,7 +410,6 @@ with gr.Blocks(css="""
424
  inputs=input_image
425
  )
426
 
427
-
428
  gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
429
 
430
  if __name__ == "__main__":
 
303
 
304
  async def predict(image):
305
  if image is None:
306
+ return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False)
307
 
308
  try:
309
  if isinstance(image, np.ndarray):
310
  image = Image.fromarray(image)
311
 
312
  # 嘗試檢測多隻狗
313
+ dogs = await detect_multiple_dogs(image)
314
  if len(dogs) == 0:
315
+ # 單狗情境
316
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
317
  if top1_prob < 0.2:
318
+ return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False)
319
 
320
  breed = topk_breeds[0]
321
  description = get_dog_description(breed)
 
322
 
 
323
  if top1_prob >= 0.5:
324
+ formatted_description = format_description(description, breed)
325
+ return formatted_description, image, gr.update(visible=False), gr.update(visible=False)
326
  else:
 
327
  explanation = (
328
  f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
329
  f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
 
331
  f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
332
  "Click on a button to view more information about the breed."
333
  )
334
+ choices = [f"More about {breed}" for breed in topk_breeds[:3]]
335
+ return explanation, image, gr.update(visible=True, choices=choices), gr.update(visible=False)
336
 
337
+ # 多狗情境
338
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
339
  explanations = []
340
+ choices = []
341
  annotated_image = image.copy()
342
  draw = ImageDraw.Draw(annotated_image)
343
  font = ImageFont.load_default()
 
350
 
351
  if top1_prob >= 0.5:
352
  breed = topk_breeds[0]
353
+ choices.append(f"Dog {i+1}: {breed}")
354
+ explanations.append(f"Dog {i+1}: **{breed}** ({topk_probs_percent[0]} confidence)")
355
+ elif top1_prob >= 0.2:
356
+ explanations.append(f"Dog {i+1}: Top 3 possible breeds:\n"
357
+ f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
358
+ f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
359
+ f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)")
360
+ choices.extend([f"Dog {i+1}: {breed}" for breed in topk_breeds[:3]])
361
  else:
362
  explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
363
 
364
  final_explanation = "\n\n".join(explanations)
365
+ return final_explanation, annotated_image, gr.update(visible=True, choices=choices), gr.update(visible=False)
366
 
367
  except Exception as e:
368
+ return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False)
 
369
 
370
  async def show_details(choice):
371
  if not choice:
372
  return "Please select a breed to view details."
373
 
374
  try:
 
375
  if "Dog" in choice:
376
  _, breed = choice.split(": ", 1)
377
  else:
 
381
  except Exception as e:
382
  return f"An error occurred while showing details: {e}"
383
 
384
+ with gr.Blocks() as iface:
 
 
 
 
 
 
 
 
 
 
385
  gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
386
  gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
387
 
 
393
  breed_buttons = gr.Radio([], label="Select breed for more details", visible=False)
394
  breed_details = gr.Markdown(label="Breed Details")
395
 
 
 
 
 
 
 
396
  input_image.change(
397
+ predict,
398
  inputs=input_image,
399
  outputs=[output, output_image, breed_buttons, breed_details]
400
  )
 
410
  inputs=input_image
411
  )
412
 
 
413
  gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
414
 
415
  if __name__ == "__main__":