Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +50 -32
scoring_calculation_system.py
CHANGED
@@ -1508,27 +1508,24 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1508 |
return min(0.2, adaptability_score)
|
1509 |
|
1510 |
|
1511 |
-
def calculate_breed_compatibility_score(
|
1512 |
-
scores: dict,
|
1513 |
-
user_prefs: UserPreferences,
|
1514 |
-
breed_info: dict
|
1515 |
-
) -> float:
|
1516 |
"""
|
1517 |
-
|
1518 |
-
|
1519 |
-
|
1520 |
-
|
1521 |
-
|
1522 |
-
|
1523 |
-
|
1524 |
-
|
|
|
1525 |
"""
|
1526 |
-
# 1.
|
1527 |
critical_params = {
|
1528 |
'space': {
|
1529 |
'threshold': 0.3,
|
1530 |
-
'conditions': lambda: True,
|
1531 |
-
'penalty': 0.3
|
1532 |
},
|
1533 |
'noise': {
|
1534 |
'threshold': 0.3,
|
@@ -1542,12 +1539,12 @@ def calculate_breed_compatibility_score(
|
|
1542 |
}
|
1543 |
}
|
1544 |
|
1545 |
-
#
|
1546 |
for param, config in critical_params.items():
|
1547 |
if scores[param] < config['threshold'] and config['conditions'](user_prefs):
|
1548 |
return config['penalty']
|
1549 |
|
1550 |
-
# 2.
|
1551 |
base_weights = {
|
1552 |
'space': 0.35,
|
1553 |
'exercise': 0.30,
|
@@ -1562,42 +1559,63 @@ def calculate_breed_compatibility_score(
|
|
1562 |
for param, weight in base_weights.items():
|
1563 |
multiplier = 1.0
|
1564 |
|
1565 |
-
#
|
1566 |
-
if param == 'space'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1567 |
multiplier *= 1.2
|
1568 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1569 |
multiplier *= 1.4
|
1570 |
-
|
1571 |
-
|
1572 |
adjusted_weights[param] = weight * multiplier
|
1573 |
|
1574 |
# 重新正規化權重
|
1575 |
total_weight = sum(adjusted_weights.values())
|
1576 |
normalized_weights = {k: v/total_weight for k, v in adjusted_weights.items()}
|
1577 |
|
1578 |
-
# 4.
|
1579 |
base_score = 0
|
1580 |
for param, weight in normalized_weights.items():
|
1581 |
score = scores[param]
|
1582 |
|
1583 |
-
#
|
1584 |
if score > 0.8:
|
1585 |
-
score = min(1.0, score * 1.2)
|
1586 |
elif score < 0.6:
|
1587 |
-
score = score * 0.8
|
1588 |
|
1589 |
base_score += score * weight
|
1590 |
|
1591 |
-
# 5.
|
1592 |
adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)
|
1593 |
-
|
1594 |
-
# 6. 計算品種特性加成
|
1595 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1596 |
|
1597 |
-
#
|
1598 |
final_score = (base_score * 0.70) + (breed_bonus * 0.20) + (adaptability_bonus * 0.10)
|
1599 |
|
1600 |
-
#
|
1601 |
return amplify_score_extreme(final_score)
|
1602 |
|
1603 |
|
|
|
1508 |
return min(0.2, adaptability_score)
|
1509 |
|
1510 |
|
1511 |
+
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
|
|
|
|
|
|
|
|
1512 |
"""
|
1513 |
+
計算品種與使用者的整體相容性分數
|
1514 |
+
|
1515 |
+
Args:
|
1516 |
+
scores: 基礎分項分數字典
|
1517 |
+
user_prefs: 使用者偏好
|
1518 |
+
breed_info: 品種資訊
|
1519 |
+
|
1520 |
+
Returns:
|
1521 |
+
最終相容性分數 (0.3-0.95)
|
1522 |
"""
|
1523 |
+
# 1. 檢查關鍵不適配參數
|
1524 |
critical_params = {
|
1525 |
'space': {
|
1526 |
'threshold': 0.3,
|
1527 |
+
'conditions': lambda p: True,
|
1528 |
+
'penalty': 0.3
|
1529 |
},
|
1530 |
'noise': {
|
1531 |
'threshold': 0.3,
|
|
|
1539 |
}
|
1540 |
}
|
1541 |
|
1542 |
+
# 檢查並處理關鍵不適配情況
|
1543 |
for param, config in critical_params.items():
|
1544 |
if scores[param] < config['threshold'] and config['conditions'](user_prefs):
|
1545 |
return config['penalty']
|
1546 |
|
1547 |
+
# 2. 基礎權重設定
|
1548 |
base_weights = {
|
1549 |
'space': 0.35,
|
1550 |
'exercise': 0.30,
|
|
|
1559 |
for param, weight in base_weights.items():
|
1560 |
multiplier = 1.0
|
1561 |
|
1562 |
+
# 居住空間相關調整
|
1563 |
+
if param == 'space':
|
1564 |
+
if user_prefs.living_space == 'apartment':
|
1565 |
+
multiplier *= 1.2
|
1566 |
+
elif breed_info['Size'] in ['Large', 'Giant']:
|
1567 |
+
multiplier *= 1.3
|
1568 |
+
|
1569 |
+
# 運動需求相關調整
|
1570 |
+
elif param == 'exercise':
|
1571 |
+
if user_prefs.exercise_time > 150:
|
1572 |
+
multiplier *= 1.4
|
1573 |
+
elif user_prefs.exercise_time < 60:
|
1574 |
+
multiplier *= 1.2
|
1575 |
+
|
1576 |
+
# 經驗相關調整
|
1577 |
+
elif param == 'experience' and user_prefs.experience_level == 'beginner':
|
1578 |
+
multiplier *= 1.3
|
1579 |
+
|
1580 |
+
# 美容需求調整
|
1581 |
+
elif param == 'grooming' and breed_info.get('Grooming Needs') == 'High':
|
1582 |
multiplier *= 1.2
|
1583 |
+
|
1584 |
+
# 健康相關調整
|
1585 |
+
elif param == 'health' and user_prefs.health_sensitivity == 'high':
|
1586 |
+
multiplier *= 1.3
|
1587 |
+
|
1588 |
+
# 噪音相關調整
|
1589 |
+
elif param == 'noise' and user_prefs.living_space == 'apartment':
|
1590 |
multiplier *= 1.4
|
1591 |
+
|
|
|
1592 |
adjusted_weights[param] = weight * multiplier
|
1593 |
|
1594 |
# 重新正規化權重
|
1595 |
total_weight = sum(adjusted_weights.values())
|
1596 |
normalized_weights = {k: v/total_weight for k, v in adjusted_weights.items()}
|
1597 |
|
1598 |
+
# 4. 計算基礎加權分數
|
1599 |
base_score = 0
|
1600 |
for param, weight in normalized_weights.items():
|
1601 |
score = scores[param]
|
1602 |
|
1603 |
+
# 非線性分數調整
|
1604 |
if score > 0.8:
|
1605 |
+
score = min(1.0, score * 1.2) # 高分獎勵
|
1606 |
elif score < 0.6:
|
1607 |
+
score = score * 0.8 # 低分懲罰
|
1608 |
|
1609 |
base_score += score * weight
|
1610 |
|
1611 |
+
# 5. 整合特性加成
|
1612 |
adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)
|
|
|
|
|
1613 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1614 |
|
1615 |
+
# 6. 計算最終分數
|
1616 |
final_score = (base_score * 0.70) + (breed_bonus * 0.20) + (adaptability_bonus * 0.10)
|
1617 |
|
1618 |
+
# 7. 轉換並限制分數範圍
|
1619 |
return amplify_score_extreme(final_score)
|
1620 |
|
1621 |
|