DawnC commited on
Commit
e17384f
·
1 Parent(s): 3a39c6a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -117
app.py CHANGED
@@ -167,33 +167,6 @@ async def predict_single_dog(image):
167
  return top1_prob, topk_breeds, topk_probs_percent
168
 
169
 
170
- # async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
171
- # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
172
- # dogs = []
173
- # boxes = []
174
- # for box in results.boxes:
175
- # if box.cls == 16: # COCO dataset class for dog is 16
176
- # xyxy = box.xyxy[0].tolist()
177
- # confidence = box.conf.item()
178
- # boxes.append((xyxy, confidence))
179
-
180
- # if not boxes:
181
- # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
182
- # else:
183
- # nms_boxes = non_max_suppression(boxes, iou_threshold)
184
-
185
- # for box, confidence in nms_boxes:
186
- # x1, y1, x2, y2 = box
187
- # w, h = x2 - x1, y2 - y1
188
- # x1 = max(0, x1 - w * 0.05)
189
- # y1 = max(0, y1 - h * 0.05)
190
- # x2 = min(image.width, x2 + w * 0.05)
191
- # y2 = min(image.height, y2 + h * 0.05)
192
- # cropped_image = image.crop((x1, y1, x2, y2))
193
- # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
194
-
195
- # return dogs
196
-
197
  async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
198
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
199
  dogs = []
@@ -212,19 +185,16 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
212
  for box, confidence in nms_boxes:
213
  x1, y1, x2, y2 = box
214
  w, h = x2 - x1, y2 - y1
215
- x1 = max(0, x1 - w * 0.1)
216
- y1 = max(0, y1 - h * 0.1)
217
- x2 = min(image.width, x2 + w * 0.1)
218
- y2 = min(image.height, y2 + h * 0.1)
219
  cropped_image = image.crop((x1, y1, x2, y2))
220
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
221
 
222
- # 如果只检测到一只狗,但置信度较低,添加整张图片作为备选
223
- if len(dogs) == 1 and dogs[0][1] < 0.5:
224
- dogs.append((image, 1.0, [0, 0, image.width, image.height]))
225
-
226
  return dogs
227
 
 
228
  def non_max_suppression(boxes, iou_threshold):
229
  keep = []
230
  boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
@@ -296,72 +266,6 @@ async def process_single_dog(image):
296
  return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
297
 
298
 
299
- # async def predict(image):
300
- # if image is None:
301
- # return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
302
-
303
- # try:
304
- # if isinstance(image, np.ndarray):
305
- # image = Image.fromarray(image)
306
-
307
- # dogs = await detect_multiple_dogs(image)
308
-
309
- # color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
310
- # explanations = []
311
- # buttons = []
312
- # annotated_image = image.copy()
313
- # draw = ImageDraw.Draw(annotated_image)
314
- # font = ImageFont.load_default()
315
-
316
- # for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
317
- # top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
318
- # color = color_list[i % len(color_list)]
319
- # draw.rectangle(box, outline=color, width=3)
320
- # draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
321
-
322
- # combined_confidence = detection_confidence * top1_prob
323
-
324
- # if top1_prob >= 0.5:
325
- # breed = topk_breeds[0]
326
- # description = get_dog_description(breed)
327
- # formatted_description = format_description(description, breed)
328
- # explanations.append(f"Dog {i+1}: {formatted_description}")
329
- # elif combined_confidence >= 0.2:
330
- # dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
331
- # dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
332
- # explanations.append(dog_explanation)
333
- # buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
334
- # else:
335
- # explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
336
-
337
- # final_explanation = "\n\n".join(explanations)
338
- # if buttons:
339
- # final_explanation += "\n\nClick on a button to view more information about the breed."
340
- # initial_state = {
341
- # "explanation": final_explanation,
342
- # "buttons": buttons,
343
- # "show_back": True,
344
- # "image": annotated_image,
345
- # "is_multi_dog": len(dogs) > 1,
346
- # "dogs_info": explanations
347
- # }
348
- # return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
349
- # else:
350
- # initial_state = {
351
- # "explanation": final_explanation,
352
- # "buttons": [],
353
- # "show_back": False,
354
- # "image": annotated_image,
355
- # "is_multi_dog": len(dogs) > 1,
356
- # "dogs_info": explanations
357
- # }
358
- # return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
359
-
360
- # except Exception as e:
361
- # error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
362
- # print(error_msg)
363
- # return error_msg, None, gr.update(visible=False, choices=[]), None
364
-
365
  async def predict(image):
366
  if image is None:
367
  return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
@@ -383,9 +287,7 @@ async def predict(image):
383
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
384
  color = color_list[i % len(color_list)]
385
  draw.rectangle(box, outline=color, width=3)
386
-
387
- if len(dogs) > 1:
388
- draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
389
 
390
  combined_confidence = detection_confidence * top1_prob
391
 
@@ -393,23 +295,14 @@ async def predict(image):
393
  breed = topk_breeds[0]
394
  description = get_dog_description(breed)
395
  formatted_description = format_description(description, breed)
396
- if len(dogs) == 1:
397
- explanations.append(f"Breed: {breed}\n{formatted_description}")
398
- else:
399
- explanations.append(f"Dog {i+1}: Breed: {breed}\n{formatted_description}")
400
  elif combined_confidence >= 0.2:
401
- if len(dogs) == 1:
402
- dog_explanation = f"Top 3 possible breeds:\n"
403
- else:
404
- dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
405
  dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
406
  explanations.append(dog_explanation)
407
- buttons.extend([f"{'Dog ' + str(i+1) + ': ' if len(dogs) > 1 else ''}More about {breed}" for breed in topk_breeds[:3]])
408
  else:
409
- if len(dogs) == 1:
410
- explanations.append("The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
411
- else:
412
- explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
413
 
414
  final_explanation = "\n\n".join(explanations)
415
  if buttons:
@@ -440,6 +333,7 @@ async def predict(image):
440
  return error_msg, None, gr.update(visible=False, choices=[]), None
441
 
442
 
 
443
  def show_details(choice, previous_output, initial_state):
444
  if not choice:
445
  return previous_output, gr.update(visible=True), initial_state
 
167
  return top1_prob, topk_breeds, topk_probs_percent
168
 
169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
  async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
171
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
172
  dogs = []
 
185
  for box, confidence in nms_boxes:
186
  x1, y1, x2, y2 = box
187
  w, h = x2 - x1, y2 - y1
188
+ x1 = max(0, x1 - w * 0.05)
189
+ y1 = max(0, y1 - h * 0.05)
190
+ x2 = min(image.width, x2 + w * 0.05)
191
+ y2 = min(image.height, y2 + h * 0.05)
192
  cropped_image = image.crop((x1, y1, x2, y2))
193
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
194
 
 
 
 
 
195
  return dogs
196
 
197
+
198
  def non_max_suppression(boxes, iou_threshold):
199
  keep = []
200
  boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
 
266
  return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
267
 
268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  async def predict(image):
270
  if image is None:
271
  return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
 
287
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
288
  color = color_list[i % len(color_list)]
289
  draw.rectangle(box, outline=color, width=3)
290
+ draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
 
 
291
 
292
  combined_confidence = detection_confidence * top1_prob
293
 
 
295
  breed = topk_breeds[0]
296
  description = get_dog_description(breed)
297
  formatted_description = format_description(description, breed)
298
+ explanations.append(f"Dog {i+1}: {formatted_description}")
 
 
 
299
  elif combined_confidence >= 0.2:
300
+ dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
 
 
 
301
  dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
302
  explanations.append(dog_explanation)
303
+ buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
304
  else:
305
+ explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
 
 
 
306
 
307
  final_explanation = "\n\n".join(explanations)
308
  if buttons:
 
333
  return error_msg, None, gr.update(visible=False, choices=[]), None
334
 
335
 
336
+
337
  def show_details(choice, previous_output, initial_state):
338
  if not choice:
339
  return previous_output, gr.update(visible=True), initial_state