DawnC commited on
Commit
f0bc5f7
·
verified ·
1 Parent(s): cf21437

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -53
app.py CHANGED
@@ -300,17 +300,72 @@ def _predict_single_dog(image):
300
  # dogs.append((cropped_image, confidence, xyxy))
301
  # return dogs
302
 
303
- async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.5):
 
 
 
 
 
 
 
 
 
 
 
 
304
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
305
  dogs = []
 
 
 
306
  for box in results.boxes:
307
  if box.cls == 16: # COCO 資料集中狗的類別是 16
308
  xyxy = box.xyxy[0].tolist()
309
  confidence = box.conf.item()
310
- cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
311
- dogs.append((cropped_image, confidence, xyxy))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
  return dogs
313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314
 
315
  # async def predict(image):
316
  # if image is None:
@@ -432,59 +487,63 @@ async def predict(image):
432
  if isinstance(image, np.ndarray):
433
  image = Image.fromarray(image)
434
 
435
- dogs = await detect_multiple_dogs(image, conf_threshold=0.05)
436
 
437
- if len(dogs) <= 1:
 
438
  return await process_single_dog(image)
439
-
440
- # 多狗情境
441
- color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
442
- explanations = []
443
- buttons = []
444
- annotated_image = image.copy()
445
- draw = ImageDraw.Draw(annotated_image)
446
- font = ImageFont.load_default()
447
-
448
- for i, (cropped_image, _, box) in enumerate(dogs):
449
- top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
450
- color = color_list[i % len(color_list)]
451
- draw.rectangle(box, outline=color, width=3)
452
- draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
453
-
454
- breed = topk_breeds[0]
455
- if top1_prob >= 0.5:
456
- description = get_dog_description(breed)
457
- formatted_description = format_description(description, breed)
458
- explanations.append(f"Dog {i+1}: {formatted_description}")
459
- elif top1_prob >= 0.2:
460
- dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
461
- dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
462
- explanations.append(dog_explanation)
463
- buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
464
- else:
465
- explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
466
-
467
- final_explanation = "\n\n".join(explanations)
468
- if buttons:
469
- final_explanation += "\n\nClick on a button to view more information about the breed."
470
- initial_state = {
471
- "explanation": final_explanation,
472
- "buttons": buttons,
473
- "show_back": True
474
- }
475
- return (final_explanation, annotated_image,
476
- buttons[0] if len(buttons) > 0 else gr.update(visible=False),
477
- buttons[1] if len(buttons) > 1 else gr.update(visible=False),
478
- buttons[2] if len(buttons) > 2 else gr.update(visible=False),
479
- gr.update(visible=True),
480
- initial_state)
481
  else:
482
- initial_state = {
483
- "explanation": final_explanation,
484
- "buttons": [],
485
- "show_back": False
486
- }
487
- return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488
 
489
  except Exception as e:
490
  error_msg = f"An error occurred: {str(e)}"
 
300
  # dogs.append((cropped_image, confidence, xyxy))
301
  # return dogs
302
 
303
+ # async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.5):
304
+ # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
305
+ # dogs = []
306
+ # for box in results.boxes:
307
+ # if box.cls == 16: # COCO 資料集中狗的類別是 16
308
+ # xyxy = box.xyxy[0].tolist()
309
+ # confidence = box.conf.item()
310
+ # cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
311
+ # dogs.append((cropped_image, confidence, xyxy))
312
+ # return dogs
313
+ # 此為如果後面調不好 使用的版本
314
+
315
+ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
316
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
317
  dogs = []
318
+ all_boxes = []
319
+
320
+ # 首先收集所有可能的狗的邊界框
321
  for box in results.boxes:
322
  if box.cls == 16: # COCO 資料集中狗的類別是 16
323
  xyxy = box.xyxy[0].tolist()
324
  confidence = box.conf.item()
325
+ all_boxes.append((xyxy, confidence))
326
+
327
+ # 按置信度排序
328
+ all_boxes.sort(key=lambda x: x[1], reverse=True)
329
+
330
+ # 應用非最大抑制
331
+ for box, confidence in all_boxes:
332
+ if not is_box_overlapping(box, [d[2] for d in dogs], iou_threshold):
333
+ cropped_image = image.crop((box[0], box[1], box[2], box[3]))
334
+ dogs.append((cropped_image, confidence, box))
335
+
336
+ # 如果沒有檢測到狗,嘗試降低閾值再次檢測
337
+ if len(dogs) == 0:
338
+ results = model_yolo(image, conf=conf_threshold/2, iou=iou_threshold)[0]
339
+ for box in results.boxes:
340
+ if box.cls == 16:
341
+ xyxy = box.xyxy[0].tolist()
342
+ confidence = box.conf.item()
343
+ cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
344
+ dogs.append((cropped_image, confidence, xyxy))
345
+
346
  return dogs
347
 
348
+ def is_box_overlapping(box, existing_boxes, iou_threshold):
349
+ for existing_box in existing_boxes:
350
+ if calculate_iou(box, existing_box) > iou_threshold:
351
+ return True
352
+ return False
353
+
354
+ def calculate_iou(box1, box2):
355
+ # 計算兩個邊界框的交集面積
356
+ x1 = max(box1[0], box2[0])
357
+ y1 = max(box1[1], box2[1])
358
+ x2 = min(box1[2], box2[2])
359
+ y2 = min(box1[3], box2[3])
360
+
361
+ intersection = max(0, x2 - x1) * max(0, y2 - y1)
362
+
363
+ area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
364
+ area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
365
+
366
+ iou = intersection / float(area1 + area2 - intersection)
367
+ return iou
368
+
369
 
370
  # async def predict(image):
371
  # if image is None:
 
487
  if isinstance(image, np.ndarray):
488
  image = Image.fromarray(image)
489
 
490
+ dogs = await detect_multiple_dogs(image, conf_threshold=0.05, iou_threshold=0.45)
491
 
492
+ if len(dogs) == 0:
493
+ # 沒有檢測到狗,使用原始圖像進行單狗處理
494
  return await process_single_dog(image)
495
+ elif len(dogs) == 1:
496
+ # 只檢測到一隻狗,使用裁剪後的圖像進行處理
497
+ return await process_single_dog(dogs[0][0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498
  else:
499
+ # 多狗情境
500
+ color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
501
+ explanations = []
502
+ buttons = []
503
+ annotated_image = image.copy()
504
+ draw = ImageDraw.Draw(annotated_image)
505
+ font = ImageFont.load_default()
506
+
507
+ for i, (cropped_image, confidence, box) in enumerate(dogs):
508
+ top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
509
+ color = color_list[i % len(color_list)]
510
+ draw.rectangle(box, outline=color, width=3)
511
+ draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
512
+
513
+ breed = topk_breeds[0]
514
+ if top1_prob >= 0.5:
515
+ description = get_dog_description(breed)
516
+ formatted_description = format_description(description, breed)
517
+ explanations.append(f"Dog {i+1}: {formatted_description}")
518
+ elif top1_prob >= 0.2:
519
+ dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
520
+ dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
521
+ explanations.append(dog_explanation)
522
+ buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
523
+ else:
524
+ explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
525
+
526
+ final_explanation = "\n\n".join(explanations)
527
+ if buttons:
528
+ final_explanation += "\n\nClick on a button to view more information about the breed."
529
+ initial_state = {
530
+ "explanation": final_explanation,
531
+ "buttons": buttons,
532
+ "show_back": True
533
+ }
534
+ return (final_explanation, annotated_image,
535
+ buttons[0] if len(buttons) > 0 else gr.update(visible=False),
536
+ buttons[1] if len(buttons) > 1 else gr.update(visible=False),
537
+ buttons[2] if len(buttons) > 2 else gr.update(visible=False),
538
+ gr.update(visible=True),
539
+ initial_state)
540
+ else:
541
+ initial_state = {
542
+ "explanation": final_explanation,
543
+ "buttons": [],
544
+ "show_back": False
545
+ }
546
+ return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
547
 
548
  except Exception as e:
549
  error_msg = f"An error occurred: {str(e)}"