DawnC commited on
Commit
f1a9877
1 Parent(s): f3136bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -24
app.py CHANGED
@@ -33,7 +33,7 @@ from html_templates import (
33
  )
34
  from urllib.parse import quote
35
  from ultralytics import YOLO
36
- from device_manager import DeviceManager, device_handler
37
  import asyncio
38
  import traceback
39
 
@@ -536,6 +536,8 @@ dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staff
536
  "Wire-Haired_Fox_Terrier"]
537
 
538
 
 
 
539
  class MultiHeadAttention(nn.Module):
540
 
541
  def __init__(self, in_dim, num_heads=8):
@@ -568,7 +570,6 @@ class BaseModel(nn.Module):
568
 
569
  def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
570
  super().__init__()
571
- self.device_mgr = DeviceManager()
572
  self.device = self.device_mgr.get_optimal_device()
573
  self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
574
  self.feature_dim = self.backbone.classifier[1].in_features
@@ -585,7 +586,6 @@ class BaseModel(nn.Module):
585
 
586
  self.to(device)
587
 
588
- @device_handler
589
  def forward(self, x):
590
  x = x.to(self.device)
591
  features = self.backbone(x)
@@ -594,7 +594,6 @@ class BaseModel(nn.Module):
594
  return logits, attended_features
595
 
596
  # Initialize model
597
- device_mgr = DeviceManager()
598
  num_classes = len(dog_breeds)
599
 
600
  # Initialize base model
@@ -623,31 +622,40 @@ def preprocess_image(image):
623
 
624
  return transform(image).unsqueeze(0)
625
 
626
- @device_handler
627
  async def predict_single_dog(image):
628
- image_tensor = preprocess_image(image)
629
-
630
- with torch.no_grad():
631
- outputs = model(image_tensor)
632
- logits = outputs[0] if isinstance(outputs, tuple) else outputs
633
- probs = F.softmax(logits, dim=1)
634
-
635
- # 其餘代碼保持不變
636
- top5_prob, top5_idx = torch.topk(probs, k=5)
637
- breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
638
- probabilities = [prob.item() for prob in top5_prob[0]]
639
-
640
- sum_probs = sum(probabilities[:3])
641
- relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
642
 
643
- print("\nClassifier Predictions:")
644
- for breed, prob in zip(breeds[:5], probabilities[:5]):
645
- print(f"{breed}: {prob:.4f}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646
 
647
- return probabilities[0], breeds[:3], relative_probs
 
 
 
 
 
 
648
 
649
 
650
- @device_handler
651
  async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
652
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
653
  dogs = []
 
33
  )
34
  from urllib.parse import quote
35
  from ultralytics import YOLO
36
+ from device_manager import DeviceManager
37
  import asyncio
38
  import traceback
39
 
 
536
  "Wire-Haired_Fox_Terrier"]
537
 
538
 
539
+ device_mgr = DeviceManager()
540
+
541
  class MultiHeadAttention(nn.Module):
542
 
543
  def __init__(self, in_dim, num_heads=8):
 
570
 
571
  def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
572
  super().__init__()
 
573
  self.device = self.device_mgr.get_optimal_device()
574
  self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
575
  self.feature_dim = self.backbone.classifier[1].in_features
 
586
 
587
  self.to(device)
588
 
 
589
  def forward(self, x):
590
  x = x.to(self.device)
591
  features = self.backbone(x)
 
594
  return logits, attended_features
595
 
596
  # Initialize model
 
597
  num_classes = len(dog_breeds)
598
 
599
  # Initialize base model
 
622
 
623
  return transform(image).unsqueeze(0)
624
 
 
625
  async def predict_single_dog(image):
626
+ """
627
+ Predicts the dog breed using only the classifier.
628
+ """
629
+ try:
630
+ image_tensor = preprocess_image(image).to(device_mgr.get_optimal_device())
 
 
 
 
 
 
 
 
 
631
 
632
+ with torch.no_grad():
633
+ outputs = model(image_tensor) # 同步調用
634
+ logits = outputs[0] if isinstance(outputs, tuple) else outputs
635
+ probs = F.softmax(logits, dim=1)
636
+
637
+ top5_prob, top5_idx = torch.topk(probs, k=5)
638
+ breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
639
+ probabilities = [prob.item() for prob in top5_prob[0]]
640
+
641
+ sum_probs = sum(probabilities[:3])
642
+ relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
643
+
644
+ print("\nClassifier Predictions:")
645
+ for breed, prob in zip(breeds[:5], probabilities[:5]):
646
+ print(f"{breed}: {prob:.4f}")
647
+
648
+ return probabilities[0], breeds[:3], relative_probs
649
 
650
+ except RuntimeError as e:
651
+ if "out of memory" in str(e) or "CUDA" in str(e):
652
+ logger.warning("ZeroGPU unavailable, falling back to CPU")
653
+ device_mgr._current_device = torch.device('cpu')
654
+ model.to('cpu')
655
+ return await predict_single_dog(image) # 遞迴調用,使用 CPU
656
+ raise e
657
 
658
 
 
659
  async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
660
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
661
  dogs = []