DawnC commited on
Commit
f282cd2
·
1 Parent(s): 4c2086d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -13
app.py CHANGED
@@ -43,7 +43,7 @@ dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staff
43
  "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
44
  "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
45
  "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
46
- "Wire-Haired_Fox_Terrier","Havanese", "Dachshund", "Shiba_Inu", "Bichon_Frise"]
47
 
48
  class MultiHeadAttention(nn.Module):
49
 
@@ -100,11 +100,11 @@ class BaseModel(nn.Module):
100
  return logits, attended_features
101
 
102
 
103
- num_classes = 124
104
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
105
  model = BaseModel(num_classes=num_classes, device=device)
106
 
107
- checkpoint = torch.load('[124_82.30]_best_model_dog.pth', map_location=torch.device('cpu'))
108
  model.load_state_dict(checkpoint['model_state_dict'])
109
 
110
  # evaluation mode
@@ -207,40 +207,67 @@ async def process_single_dog(image):
207
 
208
  # Case 1: Low confidence - unclear image or breed not in dataset
209
  if top1_prob < 0.15:
 
 
 
 
 
 
 
 
 
 
210
  initial_state = {
211
- "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
212
  "image": None,
213
  "is_multi_dog": False
214
  }
215
- return initial_state["explanation"], None, initial_state
216
 
217
  breed = topk_breeds[0]
218
 
219
  # Case 2: High confidence - single breed result
220
  if top1_prob >= 0.45:
221
  description = get_dog_description(breed)
222
- formatted_description = format_description(description, breed)
 
 
 
 
 
 
 
223
  initial_state = {
224
- "explanation": formatted_description,
225
  "image": image,
226
  "is_multi_dog": False
227
  }
228
- return formatted_description, image, initial_state
229
 
230
  # Case 3: Medium confidence - show top 3 breeds with relative probabilities
231
  else:
232
- breeds_info = ""
233
  for i, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
234
  description = get_dog_description(breed)
235
- formatted_description = format_description(description, breed)
236
- breeds_info += f"\n\nBreed {i+1}: **{breed}** (Confidence: {prob})\n{formatted_description}"
 
 
 
 
 
 
 
 
 
 
237
 
238
  initial_state = {
239
- "explanation": breeds_info,
240
  "image": image,
241
  "is_multi_dog": False
242
  }
243
- return breeds_info, image, initial_state
244
 
245
 
246
  async def predict(image):
 
43
  "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
44
  "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
45
  "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
46
+ "Wire-Haired_Fox_Terrier"]
47
 
48
  class MultiHeadAttention(nn.Module):
49
 
 
100
  return logits, attended_features
101
 
102
 
103
+ num_classes = 120
104
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
105
  model = BaseModel(num_classes=num_classes, device=device)
106
 
107
+ checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
108
  model.load_state_dict(checkpoint['model_state_dict'])
109
 
110
  # evaluation mode
 
207
 
208
  # Case 1: Low confidence - unclear image or breed not in dataset
209
  if top1_prob < 0.15:
210
+ error_message = '''
211
+ <div class="dog-info-card">
212
+ <div class="breed-info">
213
+ <p class="warning-message">
214
+ <span class="icon">⚠️</span>
215
+ The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.
216
+ </p>
217
+ </div>
218
+ </div>
219
+ '''
220
  initial_state = {
221
+ "explanation": error_message,
222
  "image": None,
223
  "is_multi_dog": False
224
  }
225
+ return error_message, None, initial_state
226
 
227
  breed = topk_breeds[0]
228
 
229
  # Case 2: High confidence - single breed result
230
  if top1_prob >= 0.45:
231
  description = get_dog_description(breed)
232
+ formatted_description = format_description_html(description, breed) # 使用 format_description_html
233
+ html_content = f'''
234
+ <div class="dog-info-card">
235
+ <div class="breed-info">
236
+ {formatted_description}
237
+ </div>
238
+ </div>
239
+ '''
240
  initial_state = {
241
+ "explanation": html_content,
242
  "image": image,
243
  "is_multi_dog": False
244
  }
245
+ return html_content, image, initial_state
246
 
247
  # Case 3: Medium confidence - show top 3 breeds with relative probabilities
248
  else:
249
+ breeds_html = ""
250
  for i, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
251
  description = get_dog_description(breed)
252
+ formatted_description = format_description_html(description, breed) # 使用 format_description_html
253
+ breeds_html += f'''
254
+ <div class="dog-info-card">
255
+ <div class="breed-info">
256
+ <div class="breed-header">
257
+ <span class="breed-name">Breed {i+1}: {breed}</span>
258
+ <span class="confidence-badge">Confidence: {prob}</span>
259
+ </div>
260
+ {formatted_description}
261
+ </div>
262
+ </div>
263
+ '''
264
 
265
  initial_state = {
266
+ "explanation": breeds_html,
267
  "image": image,
268
  "is_multi_dog": False
269
  }
270
+ return breeds_html, image, initial_state
271
 
272
 
273
  async def predict(image):