DawnC commited on
Commit
f3725a9
·
verified ·
1 Parent(s): dd99f2c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -18
app.py CHANGED
@@ -6,12 +6,10 @@ import gradio as gr
6
  from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
7
  import torch.nn.functional as F
8
  from torchvision import transforms
9
- from PIL import Image
10
  from data_manager import get_dog_description
11
  from urllib.parse import quote
12
- # os.system('pip install ultralytics')
13
  from ultralytics import YOLO
14
- from PIL import ImageDraw
15
 
16
 
17
  # 下載YOLOv8預訓練模型
@@ -273,7 +271,6 @@ Please refer to the AKC's terms of use and privacy policy.*
273
  return formatted_description
274
 
275
  def predict_single_dog(image):
276
- # 直接使用模型進行預測,無需通過 YOLO
277
  image_tensor = preprocess_image(image)
278
  with torch.no_grad():
279
  output = model(image_tensor)
@@ -285,20 +282,21 @@ def predict_single_dog(image):
285
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
286
  return top1_prob, topk_breeds, topk_probs_percent
287
 
288
-
289
  def detect_multiple_dogs(image):
290
- # 使用 YOLO 檢測多隻狗
291
- results = model_yolo(image)
292
- dogs = []
293
- for result in results:
294
- for box in result.boxes:
295
- if box.cls == 16: # COCO 資料集中狗的類別是 16
296
- xyxy = box.xyxy[0].tolist()
297
- confidence = box.conf.item()
298
- cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
299
- dogs.append((cropped_image, confidence, xyxy))
300
- return dogs
301
-
 
 
302
 
303
  def predict(image):
304
  if image is None:
@@ -340,12 +338,13 @@ Click on a button below to view more information about each breed.
340
  visible_buttons = []
341
  annotated_image = image.copy()
342
  draw = ImageDraw.Draw(annotated_image)
 
343
 
344
  for i, (cropped_image, _, box) in enumerate(dogs, 1):
345
  top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(cropped_image)
346
 
347
  draw.rectangle(box, outline="red", width=3)
348
- draw.text((box[0], box[1]), f"Dog {i}", fill="red", font=ImageFont.truetype("arial.ttf", 20))
349
 
350
  if top1_prob >= 0.5:
351
  breed = topk_breeds[0]
 
6
  from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
7
  import torch.nn.functional as F
8
  from torchvision import transforms
9
+ from PIL import Image, ImageDraw, ImageFont
10
  from data_manager import get_dog_description
11
  from urllib.parse import quote
 
12
  from ultralytics import YOLO
 
13
 
14
 
15
  # 下載YOLOv8預訓練模型
 
271
  return formatted_description
272
 
273
  def predict_single_dog(image):
 
274
  image_tensor = preprocess_image(image)
275
  with torch.no_grad():
276
  output = model(image_tensor)
 
282
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
283
  return top1_prob, topk_breeds, topk_probs_percent
284
 
 
285
  def detect_multiple_dogs(image):
286
+ try:
287
+ results = model_yolo(image)
288
+ dogs = []
289
+ for result in results:
290
+ for box in result.boxes:
291
+ if box.cls == 16: # COCO dataset class for dog is 16
292
+ xyxy = box.xyxy[0].tolist()
293
+ confidence = box.conf.item()
294
+ cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
295
+ dogs.append((cropped_image, confidence, xyxy))
296
+ return dogs
297
+ except Exception as e:
298
+ print(f"Error in detect_multiple_dogs: {e}")
299
+ return []
300
 
301
  def predict(image):
302
  if image is None:
 
338
  visible_buttons = []
339
  annotated_image = image.copy()
340
  draw = ImageDraw.Draw(annotated_image)
341
+ font = ImageFont.load_default()
342
 
343
  for i, (cropped_image, _, box) in enumerate(dogs, 1):
344
  top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(cropped_image)
345
 
346
  draw.rectangle(box, outline="red", width=3)
347
+ draw.text((box[0], box[1]), f"Dog {i}", fill="red", font=font)
348
 
349
  if top1_prob >= 0.5:
350
  breed = topk_breeds[0]