DawnC commited on
Commit
f37431f
·
1 Parent(s): 0fee5bd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py CHANGED
@@ -249,6 +249,7 @@ def get_akc_breeds_link():
249
  # if __name__ == "__main__":
250
  # iface.launch()
251
 
 
252
  def format_description(description, breed):
253
  if isinstance(description, dict):
254
  # 確保每一個描述項目換行顯示
@@ -267,6 +268,38 @@ def format_description(description, breed):
267
 
268
  return formatted_description
269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270
  async def predict(image):
271
  if image is None:
272
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
 
249
  # if __name__ == "__main__":
250
  # iface.launch()
251
 
252
+
253
  def format_description(description, breed):
254
  if isinstance(description, dict):
255
  # 確保每一個描述項目換行顯示
 
268
 
269
  return formatted_description
270
 
271
+ async def predict_single_dog(image):
272
+ return await asyncio.to_thread(_predict_single_dog, image)
273
+
274
+ def _predict_single_dog(image):
275
+ image_tensor = preprocess_image(image)
276
+ with torch.no_grad():
277
+ output = model(image_tensor)
278
+ logits = output[0] if isinstance(output, tuple) else output
279
+ probabilities = F.softmax(logits, dim=1)
280
+ topk_probs, topk_indices = torch.topk(probabilities, k=3)
281
+ top1_prob = topk_probs[0][0].item()
282
+ topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
283
+ topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
284
+ return top1_prob, topk_breeds, topk_probs_percent
285
+
286
+ async def detect_multiple_dogs(image, conf_threshold=0.3):
287
+ # 調整 YOLO 模型的置信度閾值
288
+ return await asyncio.to_thread(_detect_multiple_dogs, image, conf_threshold)
289
+
290
+ def _detect_multiple_dogs(image, conf_threshold):
291
+ results = model_yolo(image, conf=conf_threshold)
292
+ dogs = []
293
+ for result in results:
294
+ for box in result.boxes:
295
+ if box.cls == 16: # COCO 資料集中狗的類別是 16
296
+ xyxy = box.xyxy[0].tolist()
297
+ confidence = box.conf.item()
298
+ if confidence >= conf_threshold: # 只保留置信度高於閾值的框
299
+ cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
300
+ dogs.append((cropped_image, confidence, xyxy))
301
+ return dogs
302
+
303
  async def predict(image):
304
  if image is None:
305
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)