Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +634 -247
scoring_calculation_system.py
CHANGED
@@ -632,21 +632,26 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
632 |
|
633 |
def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
634 |
"""
|
635 |
-
|
636 |
-
1.
|
637 |
-
2.
|
638 |
-
3.
|
639 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
640 |
"""
|
|
|
641 |
exercise_levels = {
|
642 |
'VERY HIGH': {
|
643 |
-
'min': 120,
|
644 |
-
'ideal': 150,
|
645 |
-
'max': 180,
|
646 |
-
'
|
647 |
-
'sessions': 'multiple',
|
648 |
-
'preferred_types': ['active_training', 'intensive_exercise'],
|
649 |
-
'type_weights': {
|
650 |
'active_training': 1.0,
|
651 |
'moderate_activity': 0.6,
|
652 |
'light_walks': 0.3
|
@@ -656,61 +661,26 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
656 |
'min': 90,
|
657 |
'ideal': 120,
|
658 |
'max': 150,
|
659 |
-
'intensity': 'moderate_high',
|
660 |
-
'sessions': 'multiple',
|
661 |
-
'preferred_types': ['active_training', 'moderate_activity'],
|
662 |
'type_weights': {
|
663 |
'active_training': 0.9,
|
664 |
'moderate_activity': 0.8,
|
665 |
'light_walks': 0.4
|
666 |
}
|
667 |
},
|
668 |
-
'MODERATE HIGH': {
|
669 |
-
'min': 70,
|
670 |
-
'ideal': 90,
|
671 |
-
'max': 120,
|
672 |
-
'intensity': 'moderate',
|
673 |
-
'sessions': 'flexible',
|
674 |
-
'preferred_types': ['moderate_activity', 'active_training'],
|
675 |
-
'type_weights': {
|
676 |
-
'active_training': 0.8,
|
677 |
-
'moderate_activity': 0.9,
|
678 |
-
'light_walks': 0.5
|
679 |
-
}
|
680 |
-
},
|
681 |
'MODERATE': {
|
682 |
'min': 45,
|
683 |
'ideal': 60,
|
684 |
'max': 90,
|
685 |
-
'intensity': 'moderate',
|
686 |
-
'sessions': 'flexible',
|
687 |
-
'preferred_types': ['moderate_activity', 'light_walks'],
|
688 |
'type_weights': {
|
689 |
'active_training': 0.7,
|
690 |
'moderate_activity': 1.0,
|
691 |
'light_walks': 0.8
|
692 |
}
|
693 |
},
|
694 |
-
'MODERATE LOW': {
|
695 |
-
'min': 30,
|
696 |
-
'ideal': 45,
|
697 |
-
'max': 70,
|
698 |
-
'intensity': 'light_moderate',
|
699 |
-
'sessions': 'flexible',
|
700 |
-
'preferred_types': ['light_walks', 'moderate_activity'],
|
701 |
-
'type_weights': {
|
702 |
-
'active_training': 0.6,
|
703 |
-
'moderate_activity': 0.9,
|
704 |
-
'light_walks': 1.0
|
705 |
-
}
|
706 |
-
},
|
707 |
'LOW': {
|
708 |
'min': 15,
|
709 |
'ideal': 30,
|
710 |
'max': 45,
|
711 |
-
'intensity': 'light',
|
712 |
-
'sessions': 'single',
|
713 |
-
'preferred_types': ['light_walks'],
|
714 |
'type_weights': {
|
715 |
'active_training': 0.5,
|
716 |
'moderate_activity': 0.8,
|
@@ -719,51 +689,70 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
719 |
}
|
720 |
}
|
721 |
|
|
|
722 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
723 |
|
724 |
-
#
|
725 |
def calculate_time_score():
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
elif exercise_time
|
733 |
-
#
|
734 |
progress = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
735 |
-
return 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
736 |
else:
|
737 |
-
#
|
738 |
-
|
739 |
-
|
|
|
|
|
740 |
|
741 |
-
#
|
742 |
def calculate_type_score():
|
743 |
-
|
744 |
-
|
745 |
-
# 根據運動需求等級調整類型權重
|
746 |
-
if breed_needs.upper() in ['VERY HIGH', 'HIGH']:
|
747 |
-
if exercise_type == 'light_walks':
|
748 |
-
type_weight *= 0.5 # 高需求品種做輕度運動的懲罰
|
749 |
-
elif breed_needs.upper() == 'LOW':
|
750 |
-
if exercise_type == 'active_training':
|
751 |
-
type_weight *= 0.7 # 低需求品種做高強度運動的輕微懲罰
|
752 |
|
753 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
754 |
|
755 |
# 計算最終分數
|
756 |
time_score = calculate_time_score()
|
757 |
type_score = calculate_type_score()
|
758 |
|
759 |
-
#
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
764 |
final_score *= 0.5
|
765 |
-
elif exercise_time > breed_level['max'] * 1.5: # 運動時間過多
|
766 |
-
final_score *= 0.7
|
767 |
|
768 |
return max(0.1, min(1.0, final_score))
|
769 |
|
@@ -1583,41 +1572,132 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1583 |
return max(0.2, min(1.0, base_score - trait_penalty))
|
1584 |
|
1585 |
# 第三部分:生活環境評估
|
1586 |
-
def evaluate_living_conditions():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1587 |
size = breed_info['Size']
|
1588 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1589 |
-
|
1590 |
-
|
|
|
|
|
1591 |
space_requirements = {
|
1592 |
'apartment': {
|
1593 |
-
'Small': 1.0,
|
|
|
|
|
|
|
1594 |
},
|
1595 |
'house_small': {
|
1596 |
-
'Small': 0.9,
|
|
|
|
|
|
|
1597 |
},
|
1598 |
'house_large': {
|
1599 |
-
'Small': 0.8,
|
|
|
|
|
|
|
1600 |
}
|
1601 |
}
|
1602 |
-
|
1603 |
# 基礎空間分數
|
1604 |
-
space_score = space_requirements.get(
|
1605 |
-
|
1606 |
-
|
1607 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1608 |
if exercise_needs in ['HIGH', 'VERY HIGH']:
|
1609 |
if user_prefs.living_space != 'house_large':
|
1610 |
-
space_score *= 0.8
|
1611 |
-
|
1612 |
-
#
|
1613 |
yard_scores = {
|
1614 |
-
'no_yard': 0.7
|
1615 |
-
'shared_yard': 0.85
|
1616 |
'private_yard': 1.0
|
1617 |
}
|
1618 |
-
|
1619 |
-
|
1620 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1621 |
|
1622 |
# 第四部分:品種特性評估
|
1623 |
def evaluate_breed_traits():
|
@@ -1653,63 +1733,135 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1653 |
|
1654 |
return perfect_matches
|
1655 |
|
1656 |
-
def calculate_weights():
|
1657 |
"""
|
1658 |
-
|
1659 |
-
|
1660 |
-
|
|
|
|
|
|
|
|
|
1661 |
"""
|
1662 |
-
#
|
1663 |
base_weights = {
|
1664 |
-
'space': 0.
|
1665 |
-
'exercise': 0.
|
1666 |
-
'experience': 0.20,
|
1667 |
-
'grooming': 0.
|
1668 |
-
'noise': 0.
|
1669 |
-
'health': 0.10
|
1670 |
}
|
1671 |
-
|
1672 |
-
def analyze_condition_extremity():
|
1673 |
-
"""
|
|
|
|
|
|
|
1674 |
extremities = {}
|
1675 |
-
|
1676 |
-
# 運動時間極端度分析
|
1677 |
-
def analyze_exercise_extremity():
|
1678 |
-
if user_prefs.exercise_time <= 30:
|
1679 |
-
return ('extremely_low', 0.9)
|
1680 |
-
elif user_prefs.exercise_time <= 60:
|
1681 |
-
return ('low', 0.7)
|
1682 |
-
elif user_prefs.exercise_time >= 180:
|
1683 |
-
return ('extremely_high', 0.9)
|
1684 |
-
elif user_prefs.exercise_time >= 120:
|
1685 |
-
return ('high', 0.7)
|
1686 |
-
return ('moderate', 0.4)
|
1687 |
-
|
1688 |
-
# 空間限制極端度分析
|
1689 |
-
def analyze_space_extremity():
|
1690 |
-
space_extremity = {
|
1691 |
-
'apartment': ('highly_restricted', 0.9),
|
1692 |
-
'house_small': ('restricted', 0.6),
|
1693 |
-
'house_large': ('spacious', 0.4)
|
1694 |
-
}
|
1695 |
-
return space_extremity.get(user_prefs.living_space, ('moderate', 0.5))
|
1696 |
-
|
1697 |
-
# 經驗水平極端度分析
|
1698 |
-
def analyze_experience_extremity():
|
1699 |
-
experience_extremity = {
|
1700 |
-
'beginner': ('low', 0.8),
|
1701 |
-
'intermediate': ('moderate', 0.5),
|
1702 |
-
'advanced': ('high', 0.7)
|
1703 |
-
}
|
1704 |
-
return experience_extremity.get(user_prefs.experience_level, ('moderate', 0.5))
|
1705 |
|
1706 |
-
#
|
1707 |
-
|
1708 |
-
|
1709 |
-
|
1710 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1711 |
return extremities
|
1712 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1713 |
def calculate_weight_adjustments(extremities):
|
1714 |
"""
|
1715 |
1. 高運動量時對耐力型犬種的偏好
|
@@ -1812,150 +1964,264 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1812 |
|
1813 |
return final_weights
|
1814 |
|
1815 |
-
def apply_special_case_adjustments(score):
|
1816 |
"""
|
|
|
1817 |
1. 條件組合的協同效應
|
1818 |
-
2.
|
1819 |
-
3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1820 |
"""
|
1821 |
severity_multiplier = 1.0
|
1822 |
-
|
1823 |
-
def evaluate_spatial_exercise_combination():
|
1824 |
"""
|
1825 |
-
|
1826 |
-
|
|
|
|
|
|
|
1827 |
"""
|
1828 |
multiplier = 1.0
|
1829 |
|
1830 |
if user_prefs.living_space == 'apartment':
|
1831 |
-
|
|
|
|
|
|
|
|
|
|
|
1832 |
|
1833 |
-
#
|
1834 |
if breed_info['Size'] in ['Large', 'Giant']:
|
1835 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1836 |
|
1837 |
return multiplier
|
1838 |
-
|
1839 |
-
def evaluate_experience_combination():
|
1840 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
1841 |
multiplier = 1.0
|
1842 |
temperament = breed_info.get('Temperament', '').lower()
|
1843 |
care_level = breed_info.get('Care Level', 'MODERATE')
|
1844 |
|
1845 |
-
#
|
1846 |
if user_prefs.experience_level == 'beginner':
|
1847 |
-
# 高難度品種的嚴格限制
|
1848 |
if care_level == 'HIGH':
|
1849 |
if user_prefs.has_children:
|
1850 |
-
multiplier *= 0.5
|
1851 |
else:
|
1852 |
-
multiplier *= 0.6
|
1853 |
-
|
1854 |
-
#
|
1855 |
-
challenging_traits =
|
1856 |
-
|
1857 |
-
|
1858 |
-
|
1859 |
-
|
1860 |
-
|
1861 |
-
|
1862 |
-
|
1863 |
-
|
1864 |
-
|
|
|
|
|
1865 |
return multiplier
|
1866 |
-
|
1867 |
-
def evaluate_breed_specific_requirements():
|
1868 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
1869 |
multiplier = 1.0
|
1870 |
exercise_time = user_prefs.exercise_time
|
1871 |
exercise_type = user_prefs.exercise_type
|
1872 |
|
1873 |
-
#
|
1874 |
temperament = breed_info.get('Temperament', '').lower()
|
1875 |
description = breed_info.get('Description', '').lower()
|
1876 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1877 |
|
1878 |
-
#
|
1879 |
if exercise_needs == 'LOW':
|
1880 |
-
if exercise_time >
|
1881 |
-
multiplier *= 0.
|
1882 |
elif exercise_needs == 'VERY HIGH':
|
1883 |
-
if exercise_time < 60:
|
1884 |
-
multiplier *= 0.5
|
1885 |
-
|
|
|
1886 |
if 'sprint' in temperament:
|
1887 |
if exercise_time > 120 and exercise_type != 'active_training':
|
1888 |
-
multiplier *= 0.7
|
1889 |
|
1890 |
if any(trait in temperament for trait in ['working', 'herding']):
|
1891 |
if exercise_time < 90 or exercise_type == 'light_walks':
|
1892 |
-
multiplier *= 0.7
|
1893 |
-
|
1894 |
-
return multiplier
|
1895 |
-
|
1896 |
-
def evaluate_environmental_impact():
|
1897 |
-
"""評估環境因素的影響"""
|
1898 |
-
multiplier = 1.0
|
1899 |
|
1900 |
-
# 時間限制的影響
|
1901 |
-
if user_prefs.time_availability == 'limited':
|
1902 |
-
if breed_info.get('Exercise Needs').upper() in ['VERY HIGH', 'HIGH']:
|
1903 |
-
multiplier *= 0.7
|
1904 |
-
|
1905 |
-
# 噪音敏感度的影響
|
1906 |
-
if user_prefs.noise_tolerance == 'low':
|
1907 |
-
if breed_info.get('Breed') in breed_noise_info:
|
1908 |
-
if breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high':
|
1909 |
-
multiplier *= 0.6
|
1910 |
-
|
1911 |
return multiplier
|
1912 |
|
1913 |
-
#
|
1914 |
-
|
1915 |
-
|
1916 |
-
|
1917 |
-
severity_multiplier *= evaluate_environmental_impact()
|
1918 |
|
1919 |
-
#
|
|
|
|
|
|
|
|
|
|
|
1920 |
final_score = score * severity_multiplier
|
1921 |
return max(0.2, min(1.0, final_score))
|
1922 |
|
1923 |
def calculate_base_score(scores: dict, weights: dict) -> float:
|
1924 |
"""
|
1925 |
-
|
1926 |
-
"""
|
1927 |
-
# 進一步降低關鍵指標閾值,使系統更包容極端組合
|
1928 |
-
critical_thresholds = {
|
1929 |
-
'space': 0.45, # 進一步降低閾值
|
1930 |
-
'exercise': 0.45,
|
1931 |
-
'experience': 0.55,
|
1932 |
-
'noise': 0.55
|
1933 |
-
}
|
1934 |
|
1935 |
-
|
1936 |
-
|
1937 |
-
|
1938 |
-
|
|
|
1939 |
|
1940 |
-
|
|
|
|
|
1941 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1942 |
if critical_failures:
|
|
|
1943 |
space_exercise_penalty = 0
|
1944 |
other_penalty = 0
|
1945 |
|
1946 |
for metric, score in critical_failures:
|
1947 |
if metric in ['space', 'exercise']:
|
1948 |
-
|
|
|
|
|
1949 |
else:
|
1950 |
-
|
1951 |
-
|
|
|
|
|
|
|
1952 |
total_penalty = (space_exercise_penalty + other_penalty) / 2
|
1953 |
base_score *= (1 - total_penalty)
|
1954 |
-
|
|
|
1955 |
if len(critical_failures) > 1:
|
1956 |
-
|
1957 |
-
|
1958 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1959 |
|
1960 |
|
1961 |
def evaluate_condition_interactions(scores: dict) -> float:
|
@@ -2056,27 +2322,148 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
2056 |
return min(max_possible_score, max(min_possible_score, final_score))
|
2057 |
|
2058 |
def amplify_score_extreme(score: float) -> float:
|
2059 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2060 |
def smooth_curve(x: float, steepness: float = 12) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2061 |
import math
|
2062 |
return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
2063 |
|
2064 |
-
|
2065 |
-
|
2066 |
-
|
2067 |
|
2068 |
-
|
2069 |
-
|
2070 |
-
return 0.90 + (position * 0.06) # 80-90的原始分映射到90-96
|
2071 |
|
2072 |
-
|
2073 |
-
|
2074 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2075 |
|
2076 |
-
|
2077 |
-
|
2078 |
-
return 0.75 + (smooth_curve(position) * 0.07) # 50-70的原始分映射到75-82
|
2079 |
|
2080 |
-
|
2081 |
-
|
2082 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
632 |
|
633 |
def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
634 |
"""
|
635 |
+
計算品種運動需求與使用者運動條件的匹配度。此函數特別著重:
|
636 |
+
1. 不同品種的運動耐受度差異
|
637 |
+
2. 運動時間與類型的匹配度
|
638 |
+
3. 極端運動量的嚴格限制
|
639 |
+
|
640 |
+
Parameters:
|
641 |
+
breed_needs: 品種的運動需求等級
|
642 |
+
exercise_time: 使用者計劃的運動時間(分鐘)
|
643 |
+
exercise_type: 運動類型(輕度/中度/高度)
|
644 |
+
|
645 |
+
Returns:
|
646 |
+
float: 0.1到1.0之間的匹配分數
|
647 |
"""
|
648 |
+
# 定義每個運動需求等級的具體參數
|
649 |
exercise_levels = {
|
650 |
'VERY HIGH': {
|
651 |
+
'min': 120, # 最低需求
|
652 |
+
'ideal': 150, # 理想運動量
|
653 |
+
'max': 180, # 最大建議量
|
654 |
+
'type_weights': { # 不同運動類型的權重
|
|
|
|
|
|
|
655 |
'active_training': 1.0,
|
656 |
'moderate_activity': 0.6,
|
657 |
'light_walks': 0.3
|
|
|
661 |
'min': 90,
|
662 |
'ideal': 120,
|
663 |
'max': 150,
|
|
|
|
|
|
|
664 |
'type_weights': {
|
665 |
'active_training': 0.9,
|
666 |
'moderate_activity': 0.8,
|
667 |
'light_walks': 0.4
|
668 |
}
|
669 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
670 |
'MODERATE': {
|
671 |
'min': 45,
|
672 |
'ideal': 60,
|
673 |
'max': 90,
|
|
|
|
|
|
|
674 |
'type_weights': {
|
675 |
'active_training': 0.7,
|
676 |
'moderate_activity': 1.0,
|
677 |
'light_walks': 0.8
|
678 |
}
|
679 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
680 |
'LOW': {
|
681 |
'min': 15,
|
682 |
'ideal': 30,
|
683 |
'max': 45,
|
|
|
|
|
|
|
684 |
'type_weights': {
|
685 |
'active_training': 0.5,
|
686 |
'moderate_activity': 0.8,
|
|
|
689 |
}
|
690 |
}
|
691 |
|
692 |
+
# 獲取品種的運動參數
|
693 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
694 |
|
695 |
+
# 計算時間匹配度
|
696 |
def calculate_time_score():
|
697 |
+
"""計算運動時間的匹配度,特別處理過度運動的情況"""
|
698 |
+
if exercise_time < breed_level['min']:
|
699 |
+
# 運動不足的嚴格懲罰
|
700 |
+
deficit_ratio = exercise_time / breed_level['min']
|
701 |
+
return max(0.1, deficit_ratio * 0.4)
|
702 |
+
|
703 |
+
elif exercise_time <= breed_level['ideal']:
|
704 |
+
# 理想範圍內的漸進提升
|
705 |
progress = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
706 |
+
return 0.6 + (progress * 0.4)
|
707 |
+
|
708 |
+
elif exercise_time <= breed_level['max']:
|
709 |
+
# 理想到最大範圍的平緩下降
|
710 |
+
excess_ratio = (exercise_time - breed_level['ideal']) / (breed_level['max'] - breed_level['ideal'])
|
711 |
+
return 1.0 - (excess_ratio * 0.2)
|
712 |
+
|
713 |
else:
|
714 |
+
# 過度運動的顯著懲罰
|
715 |
+
excess = (exercise_time - breed_level['max']) / breed_level['max']
|
716 |
+
# 低運動需求品種的過度運動懲罰更嚴重
|
717 |
+
penalty_factor = 1.5 if breed_needs.upper() == 'LOW' else 1.0
|
718 |
+
return max(0.1, 0.8 - (excess * 0.5 * penalty_factor))
|
719 |
|
720 |
+
# 計算運動類型匹配度
|
721 |
def calculate_type_score():
|
722 |
+
"""評估運動類型的適合度,考慮品種特性"""
|
723 |
+
base_type_score = breed_level['type_weights'].get(exercise_type, 0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
724 |
|
725 |
+
# 特殊情況處理
|
726 |
+
if breed_needs.upper() == 'LOW' and exercise_type == 'active_training':
|
727 |
+
# 低運動需求品種不適合高強度運動
|
728 |
+
base_type_score *= 0.5
|
729 |
+
elif breed_needs.upper() == 'VERY HIGH' and exercise_type == 'light_walks':
|
730 |
+
# 高運動需求品種需要更多強度
|
731 |
+
base_type_score *= 0.6
|
732 |
+
|
733 |
+
return base_type_score
|
734 |
|
735 |
# 計算最終分數
|
736 |
time_score = calculate_time_score()
|
737 |
type_score = calculate_type_score()
|
738 |
|
739 |
+
# 根據運動需求等級調整權重
|
740 |
+
if breed_needs.upper() == 'LOW':
|
741 |
+
# 低運動需求品種更重視運動類型的合適性
|
742 |
+
final_score = (time_score * 0.6) + (type_score * 0.4)
|
743 |
+
elif breed_needs.upper() == 'VERY HIGH':
|
744 |
+
# 高運動需求品種更重視運動時間的充足性
|
745 |
+
final_score = (time_score * 0.7) + (type_score * 0.3)
|
746 |
+
else:
|
747 |
+
final_score = (time_score * 0.65) + (type_score * 0.35)
|
748 |
+
|
749 |
+
# 極端情況的最終調整
|
750 |
+
if breed_needs.upper() == 'LOW' and exercise_time > breed_level['max'] * 2:
|
751 |
+
# 低運動需求品種的過度運動顯著降分
|
752 |
+
final_score *= 0.6
|
753 |
+
elif breed_needs.upper() == 'VERY HIGH' and exercise_time < breed_level['min'] * 0.5:
|
754 |
+
# 高運動需求品種運動嚴重不足降分
|
755 |
final_score *= 0.5
|
|
|
|
|
756 |
|
757 |
return max(0.1, min(1.0, final_score))
|
758 |
|
|
|
1572 |
return max(0.2, min(1.0, base_score - trait_penalty))
|
1573 |
|
1574 |
# 第三部分:生活環境評估
|
1575 |
+
# def evaluate_living_conditions():
|
1576 |
+
# size = breed_info['Size']
|
1577 |
+
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1578 |
+
|
1579 |
+
# # 空間需求矩陣
|
1580 |
+
# space_requirements = {
|
1581 |
+
# 'apartment': {
|
1582 |
+
# 'Small': 1.0, 'Medium': 0.4, 'Large': 0.2, 'Giant': 0.1
|
1583 |
+
# },
|
1584 |
+
# 'house_small': {
|
1585 |
+
# 'Small': 0.9, 'Medium': 1.0, 'Large': 0.5, 'Giant': 0.3
|
1586 |
+
# },
|
1587 |
+
# 'house_large': {
|
1588 |
+
# 'Small': 0.8, 'Medium': 0.9, 'Large': 1.0, 'Giant': 1.0
|
1589 |
+
# }
|
1590 |
+
# }
|
1591 |
+
|
1592 |
+
# # 基礎空間分數
|
1593 |
+
# space_score = space_requirements.get(user_prefs.living_space,
|
1594 |
+
# space_requirements['house_small'])[size]
|
1595 |
+
|
1596 |
+
# # 活動空間需求調整
|
1597 |
+
# if exercise_needs in ['HIGH', 'VERY HIGH']:
|
1598 |
+
# if user_prefs.living_space != 'house_large':
|
1599 |
+
# space_score *= 0.8
|
1600 |
+
|
1601 |
+
# # 院子可用性評估
|
1602 |
+
# yard_scores = {
|
1603 |
+
# 'no_yard': 0.7,
|
1604 |
+
# 'shared_yard': 0.85,
|
1605 |
+
# 'private_yard': 1.0
|
1606 |
+
# }
|
1607 |
+
# space_score *= yard_scores.get(user_prefs.yard_access, 0.8)
|
1608 |
+
|
1609 |
+
# return space_score
|
1610 |
+
|
1611 |
+
def evaluate_living_conditions() -> float:
|
1612 |
+
"""
|
1613 |
+
評估生活環境適配性,特別加強:
|
1614 |
+
1. 降低對大型犬的過度懲罰
|
1615 |
+
2. 增加品種特性評估
|
1616 |
+
3. 提升對適應性的重視度
|
1617 |
+
"""
|
1618 |
size = breed_info['Size']
|
1619 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1620 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1621 |
+
description = breed_info.get('Description', '').lower()
|
1622 |
+
|
1623 |
+
# 重新定義空間需求矩陣,降低對大型犬的懲罰
|
1624 |
space_requirements = {
|
1625 |
'apartment': {
|
1626 |
+
'Small': 1.0,
|
1627 |
+
'Medium': 0.7, # 從0.4提升到0.7
|
1628 |
+
'Large': 0.6, # 從0.2提升到0.6
|
1629 |
+
'Giant': 0.5 # 從0.1提升到0.5
|
1630 |
},
|
1631 |
'house_small': {
|
1632 |
+
'Small': 0.9,
|
1633 |
+
'Medium': 1.0,
|
1634 |
+
'Large': 0.8, # 從0.5提升到0.8
|
1635 |
+
'Giant': 0.7 # 從0.3提升到0.7
|
1636 |
},
|
1637 |
'house_large': {
|
1638 |
+
'Small': 0.8,
|
1639 |
+
'Medium': 0.9,
|
1640 |
+
'Large': 1.0,
|
1641 |
+
'Giant': 1.0
|
1642 |
}
|
1643 |
}
|
1644 |
+
|
1645 |
# 基礎空間分數
|
1646 |
+
space_score = space_requirements.get(
|
1647 |
+
user_prefs.living_space,
|
1648 |
+
space_requirements['house_small']
|
1649 |
+
)[size]
|
1650 |
+
|
1651 |
+
# 品種適應性評估
|
1652 |
+
adaptability_bonus = 0
|
1653 |
+
adaptable_traits = ['adaptable', 'calm', 'quiet', 'gentle', 'laid-back']
|
1654 |
+
challenging_traits = ['hyperactive', 'restless', 'requires space']
|
1655 |
+
|
1656 |
+
# 計算適應性加分
|
1657 |
+
if user_prefs.living_space == 'apartment':
|
1658 |
+
for trait in adaptable_traits:
|
1659 |
+
if trait in temperament or trait in description:
|
1660 |
+
adaptability_bonus += 0.1
|
1661 |
+
|
1662 |
+
# 特別處理大型犬的適應性
|
1663 |
+
if size in ['Large', 'Giant']:
|
1664 |
+
apartment_friendly_traits = ['calm', 'gentle', 'quiet']
|
1665 |
+
matched_traits = sum(1 for trait in apartment_friendly_traits
|
1666 |
+
if trait in temperament or trait in description)
|
1667 |
+
if matched_traits > 0:
|
1668 |
+
adaptability_bonus += 0.15 * matched_traits
|
1669 |
+
|
1670 |
+
# 活動空間需求調整,更寬容的評估
|
1671 |
if exercise_needs in ['HIGH', 'VERY HIGH']:
|
1672 |
if user_prefs.living_space != 'house_large':
|
1673 |
+
space_score *= 0.9 # 從0.8提升到0.9,降低懲罰
|
1674 |
+
|
1675 |
+
# 院子可用性評估,提供更合理的獎勵
|
1676 |
yard_scores = {
|
1677 |
+
'no_yard': 0.85, # 從0.7提升到0.85
|
1678 |
+
'shared_yard': 0.92, # 從0.85提升到0.92
|
1679 |
'private_yard': 1.0
|
1680 |
}
|
1681 |
+
yard_multiplier = yard_scores.get(user_prefs.yard_access, 0.85)
|
1682 |
+
|
1683 |
+
# 根據體型調整院子重要性
|
1684 |
+
if size in ['Large', 'Giant']:
|
1685 |
+
yard_importance = 1.2
|
1686 |
+
elif size == 'Medium':
|
1687 |
+
yard_importance = 1.1
|
1688 |
+
else:
|
1689 |
+
yard_importance = 1.0
|
1690 |
+
|
1691 |
+
# 計算最終分數
|
1692 |
+
final_score = space_score * (1 + adaptability_bonus)
|
1693 |
+
|
1694 |
+
# 應用院子影響
|
1695 |
+
if user_prefs.yard_access != 'no_yard':
|
1696 |
+
yard_bonus = (yard_multiplier - 1) * yard_importance
|
1697 |
+
final_score = min(1.0, final_score + yard_bonus)
|
1698 |
+
|
1699 |
+
# 確保分數在合理範圍內,但提供更高的基礎分數
|
1700 |
+
return max(0.4, min(1.0, final_score))
|
1701 |
|
1702 |
# 第四部分:品種特性評估
|
1703 |
def evaluate_breed_traits():
|
|
|
1733 |
|
1734 |
return perfect_matches
|
1735 |
|
1736 |
+
def calculate_weights() -> dict:
|
1737 |
"""
|
1738 |
+
動態計算評分權重,特別關注:
|
1739 |
+
1. 極端情況的權重調整
|
1740 |
+
2. 使用者條件的協同效應
|
1741 |
+
3. 品種特性的影響
|
1742 |
+
|
1743 |
+
Returns:
|
1744 |
+
dict: 包含各評分項目權重的字典
|
1745 |
"""
|
1746 |
+
# 定義基礎權重 - 提供更合理的起始分配
|
1747 |
base_weights = {
|
1748 |
+
'space': 0.25, # 提升空間權重,因為這是最基本的需求
|
1749 |
+
'exercise': 0.25, # 運動需求同樣重要
|
1750 |
+
'experience': 0.20, # 保持經驗的重要性
|
1751 |
+
'grooming': 0.10, # 稍微降低美容需求的權重
|
1752 |
+
'noise': 0.10, # 維持噪音評估的權重
|
1753 |
+
'health': 0.10 # 維持健康評估的權重
|
1754 |
}
|
1755 |
+
|
1756 |
+
def analyze_condition_extremity() -> dict:
|
1757 |
+
"""
|
1758 |
+
評估使用者條件的極端程度,這影響權重的動態調整。
|
1759 |
+
根據條件的極端程度返回相應的調整建議。
|
1760 |
+
"""
|
1761 |
extremities = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1762 |
|
1763 |
+
# 運動時間評估 - 更細緻的分級
|
1764 |
+
if user_prefs.exercise_time <= 30:
|
1765 |
+
extremities['exercise'] = ('extremely_low', 0.8)
|
1766 |
+
elif user_prefs.exercise_time <= 60:
|
1767 |
+
extremities['exercise'] = ('low', 0.6)
|
1768 |
+
elif user_prefs.exercise_time >= 180:
|
1769 |
+
extremities['exercise'] = ('extremely_high', 0.8)
|
1770 |
+
elif user_prefs.exercise_time >= 120:
|
1771 |
+
extremities['exercise'] = ('high', 0.6)
|
1772 |
+
else:
|
1773 |
+
extremities['exercise'] = ('moderate', 0.3)
|
1774 |
+
|
1775 |
+
# 空間限制評估 - 更合理的空間評估
|
1776 |
+
space_extremity = {
|
1777 |
+
'apartment': ('restricted', 0.7), # 從0.9降低到0.7,減少限制
|
1778 |
+
'house_small': ('moderate', 0.5),
|
1779 |
+
'house_large': ('spacious', 0.3)
|
1780 |
+
}
|
1781 |
+
extremities['space'] = space_extremity.get(user_prefs.living_space, ('moderate', 0.5))
|
1782 |
+
|
1783 |
+
# 經驗水平評估 - 保持原有的評估邏輯
|
1784 |
+
experience_extremity = {
|
1785 |
+
'beginner': ('low', 0.7),
|
1786 |
+
'intermediate': ('moderate', 0.4),
|
1787 |
+
'advanced': ('high', 0.6)
|
1788 |
+
}
|
1789 |
+
extremities['experience'] = experience_extremity.get(user_prefs.experience_level, ('moderate', 0.5))
|
1790 |
+
|
1791 |
return extremities
|
1792 |
|
1793 |
+
def calculate_weight_adjustments(extremities: dict) -> dict:
|
1794 |
+
"""
|
1795 |
+
根據極端程度計算權重調整,特別注意條件組合的影響。
|
1796 |
+
"""
|
1797 |
+
adjustments = {}
|
1798 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1799 |
+
is_working_dog = any(trait in temperament
|
1800 |
+
for trait in ['herding', 'working', 'intelligent', 'tireless'])
|
1801 |
+
|
1802 |
+
# 空間權重調整 - 更平衡的調整方式
|
1803 |
+
if extremities['space'][0] == 'restricted':
|
1804 |
+
if extremities['exercise'][0] in ['high', 'extremely_high']:
|
1805 |
+
adjustments['space'] = 1.5 # 從1.8降低到1.5
|
1806 |
+
adjustments['exercise'] = 1.8 # 從2.5降低到1.8
|
1807 |
+
else:
|
1808 |
+
adjustments['space'] = 1.6 # 從2.5降低到1.6
|
1809 |
+
adjustments['noise'] = 1.5 # 保持合理的噪音權重
|
1810 |
+
|
1811 |
+
# 運動需求權重調整 - 更合理的運動評估
|
1812 |
+
if extremities['exercise'][0] in ['extremely_high', 'extremely_low']:
|
1813 |
+
base_adjustment = 1.8 # 從2.5降低到1.8
|
1814 |
+
if extremities['exercise'][0] == 'extremely_high':
|
1815 |
+
if is_working_dog:
|
1816 |
+
base_adjustment = 2.0 # 從3.0降低到2.0
|
1817 |
+
adjustments['exercise'] = base_adjustment
|
1818 |
+
|
1819 |
+
# 經驗需求權重調整 - 維持原有的評估邏輯
|
1820 |
+
if extremities['experience'][0] == 'low':
|
1821 |
+
adjustments['experience'] = 1.8
|
1822 |
+
if breed_info.get('Care Level') == 'HIGH':
|
1823 |
+
adjustments['experience'] = 2.0
|
1824 |
+
elif extremities['experience'][0] == 'high':
|
1825 |
+
if is_working_dog:
|
1826 |
+
adjustments['experience'] = 1.8 # 從2.5降低到1.8
|
1827 |
+
|
1828 |
+
# 特殊組合的處理
|
1829 |
+
def adjust_for_combinations():
|
1830 |
+
if (extremities['space'][0] == 'restricted' and
|
1831 |
+
extremities['exercise'][0] in ['high', 'extremely_high']):
|
1832 |
+
# 適度降低極端組合的影響
|
1833 |
+
adjustments['space'] = adjustments.get('space', 1.0) * 1.2
|
1834 |
+
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.2
|
1835 |
+
|
1836 |
+
# 理想組合的獎勵
|
1837 |
+
if (extremities['experience'][0] == 'high' and
|
1838 |
+
extremities['space'][0] == 'spacious' and
|
1839 |
+
extremities['exercise'][0] in ['high', 'extremely_high'] and
|
1840 |
+
is_working_dog):
|
1841 |
+
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.3
|
1842 |
+
adjustments['experience'] = adjustments.get('experience', 1.0) * 1.3
|
1843 |
+
|
1844 |
+
adjust_for_combinations()
|
1845 |
+
return adjustments
|
1846 |
+
|
1847 |
+
# 獲取條件極端度
|
1848 |
+
extremities = analyze_condition_extremity()
|
1849 |
+
|
1850 |
+
# 計算權重調整
|
1851 |
+
weight_adjustments = calculate_weight_adjustments(extremities)
|
1852 |
+
|
1853 |
+
# 應用權重調整,確保總和為1
|
1854 |
+
final_weights = base_weights.copy()
|
1855 |
+
for key, adjustment in weight_adjustments.items():
|
1856 |
+
if key in final_weights:
|
1857 |
+
final_weights[key] *= adjustment
|
1858 |
+
|
1859 |
+
# 正規化權重
|
1860 |
+
total_weight = sum(final_weights.values())
|
1861 |
+
normalized_weights = {k: v/total_weight for k, v in final_weights.items()}
|
1862 |
+
|
1863 |
+
return normalized_weights
|
1864 |
+
|
1865 |
def calculate_weight_adjustments(extremities):
|
1866 |
"""
|
1867 |
1. 高運動量時對耐力型犬種的偏好
|
|
|
1964 |
|
1965 |
return final_weights
|
1966 |
|
1967 |
+
def apply_special_case_adjustments(score: float) -> float:
|
1968 |
"""
|
1969 |
+
處理特殊情況和極端案例的評分調整。這個函數特別關注:
|
1970 |
1. 條件組合的協同效應
|
1971 |
+
2. 品種特性的獨特需求
|
1972 |
+
3. 極端情況的合理處理
|
1973 |
+
|
1974 |
+
這個函數就像是一個細心的裁判,會考慮到各種特殊情況,
|
1975 |
+
並根據具體場景做出合理的評分調整。
|
1976 |
+
|
1977 |
+
Parameters:
|
1978 |
+
score: 初始評分
|
1979 |
+
Returns:
|
1980 |
+
float: 調整後的評分(0.2-1.0之間)
|
1981 |
"""
|
1982 |
severity_multiplier = 1.0
|
1983 |
+
|
1984 |
+
def evaluate_spatial_exercise_combination() -> float:
|
1985 |
"""
|
1986 |
+
評估空間與運動需求的組合效應。
|
1987 |
+
|
1988 |
+
這個函數不再過分懲罰大型犬,而是更多地考慮品種的實際特性。
|
1989 |
+
就像評估一個運動員是否適合在特定場地訓練一樣,我們需要考慮
|
1990 |
+
場地大小和運動需求的整體匹配度。
|
1991 |
"""
|
1992 |
multiplier = 1.0
|
1993 |
|
1994 |
if user_prefs.living_space == 'apartment':
|
1995 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1996 |
+
description = breed_info.get('Description', '').lower()
|
1997 |
+
|
1998 |
+
# 檢查品種是否有利於公寓生活的特徵
|
1999 |
+
apartment_friendly = any(trait in temperament or trait in description
|
2000 |
+
for trait in ['calm', 'adaptable', 'quiet'])
|
2001 |
|
2002 |
+
# 大型犬的特殊處理
|
2003 |
if breed_info['Size'] in ['Large', 'Giant']:
|
2004 |
+
if apartment_friendly:
|
2005 |
+
multiplier *= 0.85 # 從0.7提升到0.85,降低懲罰
|
2006 |
+
else:
|
2007 |
+
multiplier *= 0.75 # 從0.5提升到0.75
|
2008 |
+
|
2009 |
+
# 檢查運動需求的匹配度
|
2010 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
2011 |
+
exercise_time = user_prefs.exercise_time
|
2012 |
+
|
2013 |
+
if exercise_needs in ['HIGH', 'VERY HIGH']:
|
2014 |
+
if exercise_time >= 120: # 高運動量可以部分補償空間限制
|
2015 |
+
multiplier *= 1.1
|
2016 |
|
2017 |
return multiplier
|
2018 |
+
|
2019 |
+
def evaluate_experience_combination() -> float:
|
2020 |
+
"""
|
2021 |
+
評估經驗需求的複合影響。
|
2022 |
+
|
2023 |
+
這個函數就像是評估一個工作崗位與應聘者經驗的匹配度,
|
2024 |
+
需要綜合考慮工作難度和應聘者能力。
|
2025 |
+
"""
|
2026 |
multiplier = 1.0
|
2027 |
temperament = breed_info.get('Temperament', '').lower()
|
2028 |
care_level = breed_info.get('Care Level', 'MODERATE')
|
2029 |
|
2030 |
+
# 新手飼主的特殊考慮,更寬容的評估標準
|
2031 |
if user_prefs.experience_level == 'beginner':
|
|
|
2032 |
if care_level == 'HIGH':
|
2033 |
if user_prefs.has_children:
|
2034 |
+
multiplier *= 0.7 # 從0.5提升到0.7
|
2035 |
else:
|
2036 |
+
multiplier *= 0.8 # 從0.6提升到0.8
|
2037 |
+
|
2038 |
+
# 性格特徵影響,降低懲罰程度
|
2039 |
+
challenging_traits = {
|
2040 |
+
'stubborn': -0.10, # 從-0.15降低
|
2041 |
+
'independent': -0.08, # 從-0.12降低
|
2042 |
+
'dominant': -0.08, # 從-0.12降低
|
2043 |
+
'protective': -0.06, # 從-0.10降低
|
2044 |
+
'aggressive': -0.15 # 保持較高懲罰因安全考慮
|
2045 |
+
}
|
2046 |
+
|
2047 |
+
for trait, penalty in challenging_traits.items():
|
2048 |
+
if trait in temperament:
|
2049 |
+
multiplier *= (1 + penalty)
|
2050 |
+
|
2051 |
return multiplier
|
2052 |
+
|
2053 |
+
def evaluate_breed_specific_requirements() -> float:
|
2054 |
+
"""
|
2055 |
+
評估品種特定需求。
|
2056 |
+
|
2057 |
+
這個函數就像是為每個品種量身定制評估標準,
|
2058 |
+
考慮其獨特的特性和需求。
|
2059 |
+
"""
|
2060 |
multiplier = 1.0
|
2061 |
exercise_time = user_prefs.exercise_time
|
2062 |
exercise_type = user_prefs.exercise_type
|
2063 |
|
2064 |
+
# 檢查品種特性
|
2065 |
temperament = breed_info.get('Temperament', '').lower()
|
2066 |
description = breed_info.get('Description', '').lower()
|
2067 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
2068 |
|
2069 |
+
# 運動需求匹配度評估,更合理的標準
|
2070 |
if exercise_needs == 'LOW':
|
2071 |
+
if exercise_time > 120:
|
2072 |
+
multiplier *= 0.85 # 從0.5提升到0.85
|
2073 |
elif exercise_needs == 'VERY HIGH':
|
2074 |
+
if exercise_time < 60:
|
2075 |
+
multiplier *= 0.7 # 從0.5提升到0.7
|
2076 |
+
|
2077 |
+
# 特殊品種類型的考慮
|
2078 |
if 'sprint' in temperament:
|
2079 |
if exercise_time > 120 and exercise_type != 'active_training':
|
2080 |
+
multiplier *= 0.85 # 從0.7提升到0.85
|
2081 |
|
2082 |
if any(trait in temperament for trait in ['working', 'herding']):
|
2083 |
if exercise_time < 90 or exercise_type == 'light_walks':
|
2084 |
+
multiplier *= 0.8 # 從0.7提升到0.8
|
|
|
|
|
|
|
|
|
|
|
|
|
2085 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2086 |
return multiplier
|
2087 |
|
2088 |
+
# 計算各項調整
|
2089 |
+
space_exercise_mult = evaluate_spatial_exercise_combination()
|
2090 |
+
experience_mult = evaluate_experience_combination()
|
2091 |
+
breed_specific_mult = evaluate_breed_specific_requirements()
|
|
|
2092 |
|
2093 |
+
# 整合所有調整因素
|
2094 |
+
severity_multiplier *= space_exercise_mult
|
2095 |
+
severity_multiplier *= experience_mult
|
2096 |
+
severity_multiplier *= breed_specific_mult
|
2097 |
+
|
2098 |
+
# 應用最終調整,確保分數在合理範圍內
|
2099 |
final_score = score * severity_multiplier
|
2100 |
return max(0.2, min(1.0, final_score))
|
2101 |
|
2102 |
def calculate_base_score(scores: dict, weights: dict) -> float:
|
2103 |
"""
|
2104 |
+
計算基礎評分分數,採用更靈活的評分機制。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2105 |
|
2106 |
+
這個函數使用了改進後的評分邏輯,主要關注:
|
2107 |
+
1. 降低關鍵指標的最低門檻,使系統更包容
|
2108 |
+
2. 引入非線性評分曲線,讓分數分布更合理
|
2109 |
+
3. 優化多重條件失敗的處理方式
|
2110 |
+
4. 加強對品種特性的考慮
|
2111 |
|
2112 |
+
Parameters:
|
2113 |
+
scores: 包含各項評���的字典
|
2114 |
+
weights: 包含各項權重的字典
|
2115 |
|
2116 |
+
Returns:
|
2117 |
+
float: 0.2到1.0之間的基礎分數
|
2118 |
+
"""
|
2119 |
+
# 重新定義關鍵指標閾值,提供更寬容的評分標準
|
2120 |
+
critical_thresholds = {
|
2121 |
+
'space': 0.4, # 從0.45降低到0.4
|
2122 |
+
'exercise': 0.4, # 從0.45降低到0.4
|
2123 |
+
'experience': 0.5, # 從0.55降低到0.5
|
2124 |
+
'noise': 0.5 # 保持不變,因為噪音確實是重要考慮因素
|
2125 |
+
}
|
2126 |
+
|
2127 |
+
# 評估關鍵指標失敗情況
|
2128 |
+
def evaluate_critical_failures() -> list:
|
2129 |
+
"""
|
2130 |
+
評估關鍵指標的失敗情況,但採用更寬容的標準。
|
2131 |
+
根據品種特性動態調整失敗判定。
|
2132 |
+
"""
|
2133 |
+
failures = []
|
2134 |
+
temperament = breed_info.get('Temperament', '').lower()
|
2135 |
+
|
2136 |
+
for metric, threshold in critical_thresholds.items():
|
2137 |
+
if scores[metric] < threshold:
|
2138 |
+
# 特殊情況處理:適應性強的品種可以有更低的空間要求
|
2139 |
+
if metric == 'space' and any(trait in temperament
|
2140 |
+
for trait in ['adaptable', 'calm', 'apartment']):
|
2141 |
+
if scores[metric] >= threshold - 0.1:
|
2142 |
+
continue
|
2143 |
+
|
2144 |
+
# 運動需求的特殊處理
|
2145 |
+
elif metric == 'exercise':
|
2146 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
2147 |
+
if exercise_needs == 'LOW' and scores[metric] >= threshold - 0.1:
|
2148 |
+
continue
|
2149 |
+
|
2150 |
+
failures.append((metric, scores[metric]))
|
2151 |
+
|
2152 |
+
return failures
|
2153 |
+
|
2154 |
+
# 計算基礎分數
|
2155 |
+
def calculate_weighted_score() -> float:
|
2156 |
+
"""
|
2157 |
+
計算加權分數,使用非線性函數使分數分布更合理。
|
2158 |
+
"""
|
2159 |
+
weighted_scores = []
|
2160 |
+
for key, score in scores.items():
|
2161 |
+
if key in weights:
|
2162 |
+
# 使用sigmoid函數使分數曲線更平滑
|
2163 |
+
adjusted_score = 1 / (1 + math.exp(-10 * (score - 0.5)))
|
2164 |
+
weighted_scores.append(adjusted_score * weights[key])
|
2165 |
+
|
2166 |
+
return sum(weighted_scores)
|
2167 |
+
|
2168 |
+
# 處理臨界失敗情況
|
2169 |
+
critical_failures = evaluate_critical_failures()
|
2170 |
+
base_score = calculate_weighted_score()
|
2171 |
+
|
2172 |
if critical_failures:
|
2173 |
+
# 分離空間和運動相關的懲罰
|
2174 |
space_exercise_penalty = 0
|
2175 |
other_penalty = 0
|
2176 |
|
2177 |
for metric, score in critical_failures:
|
2178 |
if metric in ['space', 'exercise']:
|
2179 |
+
# 降低空間和運動失敗的懲罰程度
|
2180 |
+
penalty = (critical_thresholds[metric] - score) * 0.12 # 從0.15降低到0.12
|
2181 |
+
space_exercise_penalty += penalty
|
2182 |
else:
|
2183 |
+
# 其他失敗的懲罰保持較高
|
2184 |
+
penalty = (critical_thresholds[metric] - score) * 0.25 # 從0.3降低到0.25
|
2185 |
+
other_penalty += penalty
|
2186 |
+
|
2187 |
+
# 計算總懲罰,但使用更溫和的方式
|
2188 |
total_penalty = (space_exercise_penalty + other_penalty) / 2
|
2189 |
base_score *= (1 - total_penalty)
|
2190 |
+
|
2191 |
+
# 多重失敗的處理更寬容
|
2192 |
if len(critical_failures) > 1:
|
2193 |
+
# 從0.98提升到0.99,降低多重失敗的疊加懲罰
|
2194 |
+
base_score *= (0.99 ** (len(critical_failures) - 1))
|
2195 |
+
|
2196 |
+
# 品種特性加分
|
2197 |
+
def apply_breed_bonus() -> float:
|
2198 |
+
"""
|
2199 |
+
根據品種特性提供額外加分,
|
2200 |
+
特別是對於在特定環境下表現良好的品種。
|
2201 |
+
"""
|
2202 |
+
bonus = 0
|
2203 |
+
temperament = breed_info.get('Temperament', '').lower()
|
2204 |
+
description = breed_info.get('Description', '').lower()
|
2205 |
+
|
2206 |
+
# 適應性加分
|
2207 |
+
adaptability_traits = ['adaptable', 'versatile', 'easy-going']
|
2208 |
+
if any(trait in temperament for trait in adaptability_traits):
|
2209 |
+
bonus += 0.05
|
2210 |
+
|
2211 |
+
# 公寓適應性加分
|
2212 |
+
if user_prefs.living_space == 'apartment':
|
2213 |
+
apartment_traits = ['calm', 'quiet', 'good for apartments']
|
2214 |
+
if any(trait in temperament or trait in description for trait in apartment_traits):
|
2215 |
+
bonus += 0.05
|
2216 |
+
|
2217 |
+
return min(0.1, bonus) # 限制最大加分
|
2218 |
+
|
2219 |
+
# 應用品種特性加分
|
2220 |
+
breed_bonus = apply_breed_bonus()
|
2221 |
+
base_score = min(1.0, base_score * (1 + breed_bonus))
|
2222 |
+
|
2223 |
+
# 確保最終分數在合理範圍內
|
2224 |
+
return max(0.2, min(1.0, base_score))
|
2225 |
|
2226 |
|
2227 |
def evaluate_condition_interactions(scores: dict) -> float:
|
|
|
2322 |
return min(max_possible_score, max(min_possible_score, final_score))
|
2323 |
|
2324 |
def amplify_score_extreme(score: float) -> float:
|
2325 |
+
"""
|
2326 |
+
優化分數分布,提供更有意義的評分範圍。
|
2327 |
+
|
2328 |
+
這個函數就像是一個分數校準器,它的作用類似於相機的色彩校準,
|
2329 |
+
讓原始的分數分布能更好地反映實際的匹配程度。比如,一個90分的匹配
|
2330 |
+
應該確實代表一個非常好的搭配,而不是一個僅僅"還可以"的選擇。
|
2331 |
+
|
2332 |
+
我們使用分段函數和平滑曲線來實現這個目標:
|
2333 |
+
- 90-100分代表極佳匹配(映射到96-100)
|
2334 |
+
- 80-90分代表優秀匹配(映射到90-96)
|
2335 |
+
- 70-80分代表良好匹配(映射到82-90)
|
2336 |
+
- 50-70分代表可接受匹配(映射到75-82)
|
2337 |
+
- 50分以下代表較差匹配(映射到70-75)
|
2338 |
+
|
2339 |
+
Parameters:
|
2340 |
+
score: 原始評分(0-1之間的浮點數)
|
2341 |
+
|
2342 |
+
Returns:
|
2343 |
+
float: 調整後的評分(0-1之間的浮點數)
|
2344 |
+
"""
|
2345 |
def smooth_curve(x: float, steepness: float = 12) -> float:
|
2346 |
+
"""
|
2347 |
+
創建平滑的S型曲線用於分數轉換。
|
2348 |
+
|
2349 |
+
這個函數使用sigmoid函數來產生平滑的轉換曲線,避免分數在
|
2350 |
+
不同區間之間產生突兀的跳變。就像是在照片編輯中,我們會使用
|
2351 |
+
漸變而不是突變來調整色調。
|
2352 |
+
|
2353 |
+
Parameters:
|
2354 |
+
x: 輸入值(0-1之間)
|
2355 |
+
steepness: 曲線的陡峭程度,越大曲線越陡
|
2356 |
+
|
2357 |
+
Returns:
|
2358 |
+
float: 轉換後的值(0-1之間)
|
2359 |
+
"""
|
2360 |
import math
|
2361 |
return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
2362 |
|
2363 |
+
def apply_range_mapping(score: float) -> float:
|
2364 |
+
"""
|
2365 |
+
將分數映射到新的範圍,並保持平滑過渡。
|
2366 |
|
2367 |
+
這個函數負責將原始分數轉換到新的分數範圍。就像是將溫度從
|
2368 |
+
攝氏度轉換到華氏度,但要保持溫度變化的連續性。
|
|
|
2369 |
|
2370 |
+
Parameters:
|
2371 |
+
score: 原始分數
|
2372 |
+
|
2373 |
+
Returns:
|
2374 |
+
float: 映射後的分數
|
2375 |
+
"""
|
2376 |
+
# 極佳匹配區間(90-100)
|
2377 |
+
if score >= 0.90:
|
2378 |
+
# 計算在當前區間內的相對位置
|
2379 |
+
position = (score - 0.90) / 0.10
|
2380 |
+
# 映射到96-100的範圍
|
2381 |
+
return 0.96 + (position * 0.04)
|
2382 |
+
|
2383 |
+
# 優秀匹配區間(80-90)
|
2384 |
+
elif score >= 0.80:
|
2385 |
+
position = (score - 0.80) / 0.10
|
2386 |
+
# 使用平滑曲線進行轉換
|
2387 |
+
transition = smooth_curve(position)
|
2388 |
+
return 0.90 + (transition * 0.06)
|
2389 |
+
|
2390 |
+
# 良好匹配區間(70-80)
|
2391 |
+
elif score >= 0.70:
|
2392 |
+
position = (score - 0.70) / 0.10
|
2393 |
+
# 加入輕微的非線性轉換
|
2394 |
+
return 0.82 + (math.pow(position, 0.9) * 0.08)
|
2395 |
+
|
2396 |
+
# 可接受匹配區間(50-70)
|
2397 |
+
elif score >= 0.50:
|
2398 |
+
position = (score - 0.50) / 0.20
|
2399 |
+
# 使用更平緩的曲線
|
2400 |
+
return 0.75 + (smooth_curve(position) * 0.07)
|
2401 |
+
|
2402 |
+
# 較差匹配區間(50以下)
|
2403 |
+
else:
|
2404 |
+
position = score / 0.50
|
2405 |
+
# 確保即使是較低分數也能得到基本分數
|
2406 |
+
return 0.70 + (smooth_curve(position) * 0.05)
|
2407 |
+
|
2408 |
+
def apply_context_bonus(score: float) -> float:
|
2409 |
+
"""
|
2410 |
+
根據具體情況添加額外的分數調整。
|
2411 |
|
2412 |
+
這個函數考慮特定的場景來微調分數,就像是考試時會根據題目
|
2413 |
+
的難度來調整給分標準。
|
|
|
2414 |
|
2415 |
+
Parameters:
|
2416 |
+
score: 當前分數
|
2417 |
+
|
2418 |
+
Returns:
|
2419 |
+
float: 調整後的分數
|
2420 |
+
"""
|
2421 |
+
bonus = 0
|
2422 |
+
|
2423 |
+
# 特殊場景加分
|
2424 |
+
temperament = breed_info.get('Temperament', '').lower()
|
2425 |
+
if user_prefs.living_space == 'apartment':
|
2426 |
+
if 'adaptable' in temperament and score > 0.85:
|
2427 |
+
bonus += 0.02
|
2428 |
+
|
2429 |
+
# 運動需求匹配度加分
|
2430 |
+
if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'LOW':
|
2431 |
+
if user_prefs.exercise_time <= 60 and score > 0.85:
|
2432 |
+
bonus += 0.01
|
2433 |
+
|
2434 |
+
return min(1.0, score + bonus)
|
2435 |
+
|
2436 |
+
# 應用基本的範圍映射
|
2437 |
+
adjusted_score = apply_range_mapping(score)
|
2438 |
+
|
2439 |
+
# 應用情境相關的調整
|
2440 |
+
final_score = apply_context_bonus(adjusted_score)
|
2441 |
+
|
2442 |
+
# 確保分數在有效範圍內
|
2443 |
+
return round(min(1.0, max(0.0, final_score)), 4)
|
2444 |
+
|
2445 |
+
# def amplify_score_extreme(score: float) -> float:
|
2446 |
+
# """優化分數分布,提供更高的分數範圍"""
|
2447 |
+
# def smooth_curve(x: float, steepness: float = 12) -> float:
|
2448 |
+
# import math
|
2449 |
+
# return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
2450 |
+
|
2451 |
+
# if score >= 0.9:
|
2452 |
+
# position = (score - 0.9) / 0.1
|
2453 |
+
# return 0.96 + (position * 0.04) # 90-100的原始分映射到96-100
|
2454 |
+
|
2455 |
+
# elif score >= 0.8:
|
2456 |
+
# position = (score - 0.8) / 0.1
|
2457 |
+
# return 0.90 + (position * 0.06) # 80-90的原始分映射到90-96
|
2458 |
+
|
2459 |
+
# elif score >= 0.7:
|
2460 |
+
# position = (score - 0.7) / 0.1
|
2461 |
+
# return 0.82 + (position * 0.08) # 70-80的原始分映射到82-90
|
2462 |
+
|
2463 |
+
# elif score >= 0.5:
|
2464 |
+
# position = (score - 0.5) / 0.2
|
2465 |
+
# return 0.75 + (smooth_curve(position) * 0.07) # 50-70的原始分映射到75-82
|
2466 |
+
|
2467 |
+
# else:
|
2468 |
+
# position = score / 0.5
|
2469 |
+
# return 0.70 + (smooth_curve(position) * 0.05) # 50以下的原始分映射到70-75
|