from dataclasses import dataclass from breed_health_info import breed_health_info from breed_noise_info import breed_noise_info @dataclass class UserPreferences: """使用者偏好設定的資料結構""" living_space: str # "apartment", "house_small", "house_large" yard_access: str # "no_yard", "shared_yard", "private_yard" exercise_time: int # minutes per day exercise_type: str # "light_walks", "moderate_activity", "active_training" grooming_commitment: str # "low", "medium", "high" experience_level: str # "beginner", "intermediate", "advanced" time_availability: str # "limited", "moderate", "flexible" has_children: bool children_age: str # "toddler", "school_age", "teenager" noise_tolerance: str # "low", "medium", "high" space_for_play: bool other_pets: bool climate: str # "cold", "moderate", "hot" health_sensitivity: str = "medium" barking_acceptance: str = None def __post_init__(self): """在初始化後運行,用於設置派生值""" if self.barking_acceptance is None: self.barking_acceptance = self.noise_tolerance @staticmethod def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float: """計算品種額外加分""" bonus = 0.0 temperament = breed_info.get('Temperament', '').lower() # 1. 壽命加分(最高0.05) try: lifespan = breed_info.get('Lifespan', '10-12 years') years = [int(x) for x in lifespan.split('-')[0].split()[0:1]] longevity_bonus = min(0.05, (max(years) - 10) * 0.01) bonus += longevity_bonus except: pass # 2. 性格特徵加分(最高0.15) positive_traits = { 'friendly': 0.05, 'gentle': 0.05, 'patient': 0.05, 'intelligent': 0.04, 'adaptable': 0.04, 'affectionate': 0.04, 'easy-going': 0.03, 'calm': 0.03 } negative_traits = { 'aggressive': -0.08, 'stubborn': -0.06, 'dominant': -0.06, 'aloof': -0.04, 'nervous': -0.05, 'protective': -0.04 } personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament) personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament) bonus += max(-0.15, min(0.15, personality_score)) # 3. 適應性加分(最高0.1) adaptability_bonus = 0.0 if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment": adaptability_bonus += 0.05 if 'adaptable' in temperament or 'versatile' in temperament: adaptability_bonus += 0.05 bonus += min(0.1, adaptability_bonus) # 4. 家庭相容性(最高0.1) if user_prefs.has_children: family_traits = { 'good with children': 0.06, 'patient': 0.05, 'gentle': 0.05, 'tolerant': 0.04, 'playful': 0.03 } unfriendly_traits = { 'aggressive': -0.08, 'nervous': -0.07, 'protective': -0.06, 'territorial': -0.05 } # 年齡評估這樣能更細緻 age_adjustments = { 'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3}, 'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0}, 'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8} } adj = age_adjustments.get(user_prefs.children_age, {'bonus_mult': 1.0, 'penalty_mult': 1.0}) family_bonus = sum(value for trait, value in family_traits.items() if trait in temperament) * adj['bonus_mult'] family_penalty = sum(value for trait, value in unfriendly_traits.items() if trait in temperament) * adj['penalty_mult'] bonus += min(0.15, max(-0.2, family_bonus + family_penalty)) # 5. 專門技能加分(最高0.1) skill_bonus = 0.0 special_abilities = { 'working': 0.03, 'herding': 0.03, 'hunting': 0.03, 'tracking': 0.03, 'agility': 0.02 } for ability, value in special_abilities.items(): if ability in temperament.lower(): skill_bonus += value bonus += min(0.1, skill_bonus) return min(0.5, max(-0.25, bonus)) @staticmethod def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict: """計算額外的評估因素""" factors = { 'versatility': 0.0, # 多功能性 'trainability': 0.0, # 可訓練度 'energy_level': 0.0, # 能量水平 'grooming_needs': 0.0, # 美容需求 'social_needs': 0.0, # 社交需求 'weather_adaptability': 0.0 # 氣候適應性 } temperament = breed_info.get('Temperament', '').lower() size = breed_info.get('Size', 'Medium') # 1. 多功能性評估 versatile_traits = ['intelligent', 'adaptable', 'trainable', 'athletic'] working_roles = ['working', 'herding', 'hunting', 'sporting', 'companion'] trait_score = sum(0.2 for trait in versatile_traits if trait in temperament) role_score = sum(0.2 for role in working_roles if role in breed_info.get('Description', '').lower()) factors['versatility'] = min(1.0, trait_score + role_score) # 2. 可訓練度評估 trainable_traits = { 'intelligent': 0.3, 'eager to please': 0.3, 'trainable': 0.2, 'quick learner': 0.2 } factors['trainability'] = min(1.0, sum(value for trait, value in trainable_traits.items() if trait in temperament)) # 3. 能量水平評估 exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() energy_levels = { 'VERY HIGH': 1.0, 'HIGH': 0.8, 'MODERATE': 0.6, 'LOW': 0.4, 'VARIES': 0.6 } factors['energy_level'] = energy_levels.get(exercise_needs, 0.6) # 4. 美容需求評估 grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper() grooming_levels = { 'HIGH': 1.0, 'MODERATE': 0.6, 'LOW': 0.3 } coat_penalty = 0.2 if any(term in breed_info.get('Description', '').lower() for term in ['long coat', 'double coat']) else 0 factors['grooming_needs'] = min(1.0, grooming_levels.get(grooming_needs, 0.6) + coat_penalty) # 5. 社交需求評估 social_traits = ['friendly', 'social', 'affectionate', 'people-oriented'] antisocial_traits = ['independent', 'aloof', 'reserved'] social_score = sum(0.25 for trait in social_traits if trait in temperament) antisocial_score = sum(-0.2 for trait in antisocial_traits if trait in temperament) factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score)) # 6. 氣候適應性評估 climate_terms = { 'cold': ['thick coat', 'winter', 'cold climate'], 'hot': ['short coat', 'warm climate', 'heat tolerant'], 'moderate': ['adaptable', 'all climate'] } climate_matches = sum(1 for term in climate_terms[user_prefs.climate] if term in breed_info.get('Description', '').lower()) factors['weather_adaptability'] = min(1.0, climate_matches * 0.3 + 0.4) # 基礎分0.4 return factors def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict: """計算品種與使用者條件的相容性分數的優化版本""" try: print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}") print(f"Breed info keys: {breed_info.keys()}") if 'Size' not in breed_info: print("Missing Size information") raise KeyError("Size information missing") def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float: """空間分數計算""" # 基礎空間需求矩陣 base_scores = { "Small": {"apartment": 0.95, "house_small": 1.0, "house_large": 0.90}, "Medium": {"apartment": 0.60, "house_small": 0.90, "house_large": 1.0}, "Large": {"apartment": 0.30, "house_small": 0.75, "house_large": 1.0}, "Giant": {"apartment": 0.15, "house_small": 0.55, "house_large": 1.0} } # 取得基礎分數 base_score = base_scores.get(size, base_scores["Medium"])[living_space] # 運動需求調整 exercise_adjustments = { "Very High": -0.15 if living_space == "apartment" else 0, "High": -0.10 if living_space == "apartment" else 0, "Moderate": 0, "Low": 0.05 if living_space == "apartment" else 0 } adjustments = exercise_adjustments.get(exercise_needs.strip(), 0) # 院子獎勵 if has_yard and size in ["Large", "Giant"]: adjustments += 0.10 elif has_yard: adjustments += 0.05 return min(1.0, max(0.1, base_score + adjustments)) def calculate_exercise_score(breed_needs: str, user_time: int) -> float: """運動需求計算""" exercise_needs = { 'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180}, 'HIGH': {'min': 90, 'ideal': 120, 'max': 150}, 'MODERATE': {'min': 45, 'ideal': 60, 'max': 90}, 'LOW': {'min': 20, 'ideal': 30, 'max': 45}, 'VARIES': {'min': 30, 'ideal': 60, 'max': 90} } breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE']) # 計算匹配度 if user_time >= breed_need['ideal']: if user_time > breed_need['max']: return 0.9 # 稍微降分,因為可能過度運動 return 1.0 elif user_time >= breed_need['min']: return 0.8 + (user_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.2 else: return max(0.3, 0.8 * (user_time / breed_need['min'])) def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float: """美容需求計算""" # 基礎分數矩陣 base_scores = { "High": {"low": 0.3, "medium": 0.7, "high": 1.0}, "Moderate": {"low": 0.5, "medium": 0.9, "high": 1.0}, "Low": {"low": 1.0, "medium": 0.95, "high": 0.8} } # 取得基礎分數 base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment] # 體型影響調整 size_adjustments = { "Large": {"low": -0.2, "medium": -0.1, "high": 0}, "Giant": {"low": -0.3, "medium": -0.15, "high": 0}, } if breed_size in size_adjustments: adjustment = size_adjustments[breed_size].get(user_commitment, 0) base_score = max(0.2, base_score + adjustment) return base_score # def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float: # """飼養經驗需求計算""" # # 初始化 temperament_adjustments,確保所有路徑都有值 # temperament_adjustments = 0.0 # # 降低初學者的基礎分數 # base_scores = { # "High": {"beginner": 0.15, "intermediate": 0.70, "advanced": 1.0}, # "Moderate": {"beginner": 0.40, "intermediate": 0.85, "advanced": 1.0}, # "Low": {"beginner": 0.75, "intermediate": 0.95, "advanced": 1.0} # } # score = base_scores.get(care_level, base_scores["Moderate"])[user_experience] # # 擴展性格特徵評估 # temperament_lower = temperament.lower() # if user_experience == "beginner": # # 增加更多特徵評估 # difficult_traits = { # 'stubborn': -0.12, # 'independent': -0.10, # 'dominant': -0.10, # 'strong-willed': -0.08, # 'protective': -0.06, # 'energetic': -0.05 # } # easy_traits = { # 'gentle': 0.06, # 'friendly': 0.06, # 'eager to please': 0.06, # 'patient': 0.05, # 'adaptable': 0.05, # 'calm': 0.04 # } # # 更精確的特徵影響計算 # temperament_adjustments = sum(value for trait, value in easy_traits.items() if trait in temperament_lower) # temperament_adjustments += sum(value for trait, value in difficult_traits.items() if trait in temperament_lower) # # 品種特定調整 # if "terrier" in breed_info['Description'].lower(): # temperament_adjustments -= 0.1 # 梗類犬對新手不友善 # elif user_experience == "intermediate": # # 中級飼主的調整較溫和 # if any(trait in temperament_lower for trait in ['gentle', 'friendly', 'patient']): # temperament_adjustments += 0.03 # if any(trait in temperament_lower for trait in ['stubborn', 'independent']): # temperament_adjustments -= 0.02 # else: # advanced # # 資深飼主能處理更具挑戰性的犬種 # if any(trait in temperament_lower for trait in ['stubborn', 'independent', 'dominant']): # temperament_adjustments += 0.02 # 反而可能是優點 # if any(trait in temperament_lower for trait in ['protective', 'energetic']): # temperament_adjustments += 0.03 # final_score = max(0.2, min(1.0, score + temperament_adjustments)) # return final_score def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float: """ 計算使用者經驗與品種需求的匹配分數 參數說明: care_level: 品種的照顧難度 ("High", "Moderate", "Low") user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced") temperament: 品種的性格特徵描述 返回: float: 0.2-1.0 之間的匹配分數 """ # 基礎分數矩陣 - 更大的分數差異來反映經驗重要性 base_scores = { "High": { "beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰 "intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間 "advanced": 1.0 # 資深者能完全勝任 }, "Moderate": { "beginner": 0.35, # 適中難度對新手來說仍具挑戰 "intermediate": 0.82, # 中級玩家有很好的勝任能力 "advanced": 1.0 # 資深者完全勝任 }, "Low": { "beginner": 0.72, # 低難度品種適合新手 "intermediate": 0.92, # 中級玩家幾乎完全勝任 "advanced": 1.0 # 資深者完全勝任 } } # 取得基礎分數 score = base_scores.get(care_level, base_scores["Moderate"])[user_experience] # 性格特徵評估 - 根據經驗等級調整權重 temperament_lower = temperament.lower() temperament_adjustments = 0.0 if user_experience == "beginner": # 新手不適合的特徵 - 更嚴格的懲罰 difficult_traits = { 'stubborn': -0.15, # 加重固執的懲罰 'independent': -0.12, # 加重獨立性的懲罰 'dominant': -0.12, # 加重支配性的懲罰 'strong-willed': -0.10, # 加重強勢的懲罰 'protective': -0.08, # 加重保護性的懲罰 'aloof': -0.08, # 加重冷漠的懲罰 'energetic': -0.06 # 輕微懲罰高能量 } # 新手友善的特徵 - 提供更多獎勵 easy_traits = { 'gentle': 0.08, # 增加溫和的獎勵 'friendly': 0.08, # 增加友善的獎勵 'eager to please': 0.08, # 增加順從的獎勵 'patient': 0.06, # 獎勵耐心 'adaptable': 0.06, # 獎勵適應性 'calm': 0.05 # 獎勵冷靜 } # 計算特徵調整 for trait, penalty in difficult_traits.items(): if trait in temperament_lower: temperament_adjustments += penalty * 1.2 # 加重新手的懲罰 for trait, bonus in easy_traits.items(): if trait in temperament_lower: temperament_adjustments += bonus # 品種特殊調整 if any(term in temperament_lower for term in ['terrier', 'working', 'guard']): temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰 elif user_experience == "intermediate": # 中級玩家的調整更加平衡 moderate_traits = { 'intelligent': 0.05, # 獎勵聰明 'athletic': 0.04, # 獎勵運動能力 'versatile': 0.04, # 獎勵多功能性 'stubborn': -0.06, # 輕微懲罰固執 'independent': -0.05, # 輕微懲罰獨立性 'protective': -0.04 # 輕微懲罰保護性 } for trait, adjustment in moderate_traits.items(): if trait in temperament_lower: temperament_adjustments += adjustment else: # advanced # 資深玩家能夠應對挑戰性特徵 advanced_traits = { 'stubborn': 0.04, # 反轉為優勢 'independent': 0.04, # 反轉為優勢 'intelligent': 0.05, # 獎勵聰明 'protective': 0.04, # 獎勵保護性 'strong-willed': 0.03 # 獎勵強勢 } for trait, bonus in advanced_traits.items(): if trait in temperament_lower: temperament_adjustments += bonus # 確保最終分數在合理範圍內 final_score = max(0.2, min(1.0, score + temperament_adjustments)) return final_score def calculate_health_score(breed_name: str) -> float: """計算品種健康分數""" if breed_name not in breed_health_info: return 0.5 health_notes = breed_health_info[breed_name]['health_notes'].lower() # 嚴重健康問題(降低0.15分) severe_conditions = [ 'hip dysplasia', 'heart disease', 'progressive retinal atrophy', 'bloat', 'epilepsy', 'degenerative myelopathy', 'von willebrand disease' ] # 中度健康問題(降低0.1分) moderate_conditions = [ 'allergies', 'eye problems', 'joint problems', 'hypothyroidism', 'ear infections', 'skin issues' ] # 輕微健康問題(降低0.05分) minor_conditions = [ 'dental issues', 'weight gain tendency', 'minor allergies', 'seasonal allergies' ] # 計算基礎健康分數 health_score = 1.0 # 根據問題嚴重程度扣分 severe_count = sum(1 for condition in severe_conditions if condition in health_notes) moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes) minor_count = sum(1 for condition in minor_conditions if condition in health_notes) health_score -= (severe_count * 0.15) health_score -= (moderate_count * 0.1) health_score -= (minor_count * 0.05) # 壽命影響 try: lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12') years = float(lifespan.split('-')[0]) if years < 8: health_score *= 0.9 elif years > 13: health_score *= 1.1 except: pass # 特殊健康優勢 if 'generally healthy' in health_notes or 'hardy breed' in health_notes: health_score *= 1.1 return max(0.2, min(1.0, health_score)) def calculate_noise_score(breed_name: str, user_noise_tolerance: str) -> float: """計算品種噪音分數""" if breed_name not in breed_noise_info: return 0.5 noise_info = breed_noise_info[breed_name] noise_level = noise_info['noise_level'].lower() noise_notes = noise_info['noise_notes'].lower() # 基礎噪音分數矩陣 base_scores = { 'low': {'low': 1.0, 'medium': 0.9, 'high': 0.8}, 'medium': {'low': 0.7, 'medium': 1.0, 'high': 0.9}, 'high': {'low': 0.4, 'medium': 0.7, 'high': 1.0}, 'varies': {'low': 0.6, 'medium': 0.8, 'high': 0.9} } # 獲取基礎分數 base_score = base_scores.get(noise_level, {'low': 0.7, 'medium': 0.8, 'high': 0.6})[user_noise_tolerance] # 吠叫原因評估 barking_reasons_penalty = 0 problematic_triggers = [ ('separation anxiety', -0.15), ('excessive barking', -0.12), ('territorial', -0.08), ('alert barking', -0.05), ('attention seeking', -0.05) ] for trigger, penalty in problematic_triggers: if trigger in noise_notes: barking_reasons_penalty += penalty # 可訓練性補償 trainability_bonus = 0 if 'responds well to training' in noise_notes: trainability_bonus = 0.1 elif 'can be trained' in noise_notes: trainability_bonus = 0.05 # 特殊情況 special_adjustments = 0 if 'rarely barks' in noise_notes: special_adjustments += 0.1 if 'howls' in noise_notes and user_noise_tolerance == 'low': special_adjustments -= 0.1 final_score = base_score + barking_reasons_penalty + trainability_bonus + special_adjustments return max(0.2, min(1.0, final_score)) # 計算所有基礎分數 scores = { 'space': calculate_space_score( breed_info['Size'], user_prefs.living_space, user_prefs.space_for_play, breed_info.get('Exercise Needs', 'Moderate') ), 'exercise': calculate_exercise_score( breed_info.get('Exercise Needs', 'Moderate'), user_prefs.exercise_time ), 'grooming': calculate_grooming_score( breed_info.get('Grooming Needs', 'Moderate'), user_prefs.grooming_commitment.lower(), breed_info['Size'] ), 'experience': calculate_experience_score( breed_info.get('Care Level', 'Moderate'), user_prefs.experience_level, breed_info.get('Temperament', '') ), 'health': calculate_health_score(breed_info.get('Breed', '')), 'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance) } # 優化權重配置 weights = { 'space': 0.28, 'exercise': 0.18, 'grooming': 0.12, 'experience': 0.22, 'health': 0.12, 'noise': 0.08 } # 計算加權總分 weighted_score = sum(score * weights[category] for category, score in scores.items()) # # 擴大分數差異 # def amplify_score(score): # # 使用指數函數擴大差異 # amplified = pow((score - 0.5) * 2, 3) / 8 + score # return max(0.65, min(0.95, amplified)) # 限制在65%-95%範圍內 def amplify_score(score): """ 將原始分數放大,創造更明顯的差異 參數: score: 原始分數 (0.0-1.0) 返回: float: 放大後的分數 (0.60-0.95) """ # 基礎分數調整 - 將範圍集中到更有意義的區間 adjusted = (score - 0.4) * 1.67 # 使用更強的指數關係來放大差異 # 指數3可以在高分區間產生更明顯的差異 amplified = pow(adjusted, 3) / 8 + score # 確保分數在60%-95%之間,並保持合理的分布 return max(0.60, min(0.95, amplified)) final_score = amplify_score(weighted_score) # 四捨五入所有分數 scores = {k: round(v, 4) for k, v in scores.items()} scores['overall'] = round(final_score, 4) return scores except Exception as e: print(f"Error details: {str(e)}") print(f"breed_info: {breed_info}") # print(f"Error in calculate_compatibility_score: {str(e)}") return {k: 0.5 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}