File size: 5,948 Bytes
b49897a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import subprocess
import numpy as np
import os
from threading import Thread
import uuid
import io
import re  # Import regular expressions for word highlighting

# Model and Processor Loading (Done once at startup)
MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
model = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)

DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"

# Define supported media extensions
image_extensions = Image.registered_extensions()
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")


def identify_and_save_blob(blob_path):
    """Identifies if the blob is an image or video and saves it accordingly."""
    try:
        with open(blob_path, 'rb') as file:
            blob_content = file.read()

            # Try to identify if it's an image
            try:
                Image.open(io.BytesIO(blob_content)).verify()  # Check if it's a valid image
                extension = ".png"  # Default to PNG for saving
                media_type = "image"
            except (IOError, SyntaxError):
                # If it's not a valid image, assume it's a video
                extension = ".mp4"  # Default to MP4 for saving
                media_type = "video"

            # Create a unique filename
            filename = f"temp_{uuid.uuid4()}_media{extension}"
            with open(filename, "wb") as f:
                f.write(blob_content)

            return filename, media_type

    except FileNotFoundError:
        raise ValueError(f"The file {blob_path} was not found.")
    except Exception as e:
        raise ValueError(f"An error occurred while processing the file: {e}")


@spaces.GPU
def qwen_inference(media_input, search_word):
    """

    Performs OCR on the input media and highlights the search_word in the extracted text.



    Args:

        media_input (str): Path to the uploaded image or video file.

        search_word (str): The word to search and highlight in the OCR result.



    Yields:

        str: The OCR result with highlighted search words.

    """
    text_input = "Extract text"  # Hardcoded text query

    if isinstance(media_input, str):  # If it's a filepath
        media_path = media_input
        if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
            media_type = "image"
        elif media_path.endswith(video_extensions):
            media_type = "video"
        else:
            try:
                media_path, media_type = identify_and_save_blob(media_input)
                print(media_path, media_type)
            except Exception as e:
                print(e)
                raise ValueError(
                    "Unsupported media type. Please upload an image or video."
                )

    print(f"Processing media: {media_path} (Type: {media_type})")

    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": media_type,
                    media_type: media_path,
                    **({"fps": 8.0} if media_type == "video" else {}),
                },
                {"type": "text", "text": text_input},
            ],
        }
    ]

    # Apply chat template to format the input for the model
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)

    # Prepare model inputs
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to("cuda")

    # Initialize the streamer for iterative generation
    streamer = TextIteratorStreamer(
        processor, skip_prompt=True, **{"skip_special_tokens": True}
    )
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)

    # Start the generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        # Highlight the search_word in the buffer
        if search_word:
            # Use regex for case-insensitive search and highlight
            pattern = re.compile(re.escape(search_word), re.IGNORECASE)
            highlighted_text = pattern.sub(lambda m: f"<mark>{m.group(0)}</mark>", buffer)
        else:
            highlighted_text = buffer
        yield highlighted_text


css = """

  #output {

    height: 500px;

    overflow: auto;

    border: 1px solid #ccc;

  }

"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Tab(label="Image/Video Input"):
        with gr.Row():
            with gr.Column():
                input_media = gr.File(
                    label="Upload Image or Video", type="filepath"
                )
                search_word = gr.Textbox(
                    label="Search Word", placeholder="Enter word to highlight", lines=1
                )
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                # Use HTML component to display highlighted text
                output_text = gr.HTML(label="Output Text")

        submit_btn.click(
            qwen_inference,
            inputs=[input_media, search_word],
            outputs=[output_text]
        )

demo.launch(debug=True)