Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,932 Bytes
3ab16a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import torch
from torch import nn
from einops import rearrange
import numpy as np
from typing import List
from models.id_embedding.helpers import get_rep_pos, shift_tensor_dim0
from models.id_embedding.meta_net import StyleVectorizer
from models.celeb_embeddings import _get_celeb_embeddings_basis
from functools import partial
import torch.nn.functional as F
import torch.nn as nn
import torch.nn.init as init
DEFAULT_PLACEHOLDER_TOKEN = ["*"]
PROGRESSIVE_SCALE = 2000
def get_clip_token_for_string(tokenizer, string):
batch_encoding = tokenizer(string, return_length=True, padding=True, truncation=True, return_overflowing_tokens=False, return_tensors="pt")
tokens = batch_encoding["input_ids"]
return tokens
def get_embedding_for_clip_token(embedder, token):
return embedder(token.unsqueeze(0))
class EmbeddingManagerId_adain(nn.Module):
def __init__(
self,
tokenizer,
text_encoder,
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"),
experiment_name = "normal_GAN",
num_embeds_per_token: int = 2,
loss_type: str = None,
mlp_depth: int = 2,
token_dim: int = 1024,
input_dim: int = 1024,
**kwargs
):
super().__init__()
self.device = device
self.num_es = num_embeds_per_token
self.get_token_for_string = partial(get_clip_token_for_string, tokenizer)
self.get_embedding_for_tkn = partial(get_embedding_for_clip_token, text_encoder.text_model.embeddings)
self.token_dim = token_dim
''' 1. Placeholder mapping dicts '''
self.placeholder_token = self.get_token_for_string("*")[0][1]
if experiment_name == "normal_GAN":
self.celeb_embeddings_mean, self.celeb_embeddings_std = _get_celeb_embeddings_basis(tokenizer, text_encoder, "datasets_face/good_names.txt")
elif experiment_name == "man_GAN":
self.celeb_embeddings_mean, self.celeb_embeddings_std = _get_celeb_embeddings_basis(tokenizer, text_encoder, "datasets_face/good_names_man.txt")
elif experiment_name == "woman_GAN":
self.celeb_embeddings_mean, self.celeb_embeddings_std = _get_celeb_embeddings_basis(tokenizer, text_encoder, "datasets_face/good_names_woman.txt")
else:
print("Hello, please notice this ^_^")
assert 0
print("now experiment_name:", experiment_name)
self.celeb_embeddings_mean = self.celeb_embeddings_mean.to(device)
self.celeb_embeddings_std = self.celeb_embeddings_std.to(device)
self.name_projection_layer = StyleVectorizer(input_dim, self.token_dim * self.num_es, depth=mlp_depth, lr_mul=0.1)
self.embedding_discriminator = Embedding_discriminator(self.token_dim * self.num_es, dropout_rate = 0.2)
self.adain_mode = 0
def forward(
self,
tokenized_text,
embedded_text,
name_batch,
random_embeddings = None,
timesteps = None,
):
if tokenized_text is not None:
batch_size, n, device = *tokenized_text.shape, tokenized_text.device
other_return_dict = {}
if random_embeddings is not None:
mlp_output_embedding = self.name_projection_layer(random_embeddings)
total_embedding = mlp_output_embedding.view(mlp_output_embedding.shape[0], 2, 1024)
if self.adain_mode == 0:
adained_total_embedding = total_embedding * self.celeb_embeddings_std + self.celeb_embeddings_mean
else:
adained_total_embedding = total_embedding
other_return_dict["total_embedding"] = total_embedding
other_return_dict["adained_total_embedding"] = adained_total_embedding
if name_batch is not None:
if isinstance(name_batch, list):
name_tokens = self.get_token_for_string(name_batch)[:, 1:3]
name_embeddings = self.get_embedding_for_tkn(name_tokens.to(random_embeddings.device))[0]
other_return_dict["name_embeddings"] = name_embeddings
else:
assert 0
if tokenized_text is not None:
placeholder_pos = get_rep_pos(tokenized_text,
[self.placeholder_token])
placeholder_pos = np.array(placeholder_pos)
if len(placeholder_pos) != 0:
batch_size = adained_total_embedding.shape[0]
end_index = min(batch_size, placeholder_pos.shape[0])
embedded_text[placeholder_pos[:, 0], placeholder_pos[:, 1]] = adained_total_embedding[:end_index,0,:]
embedded_text[placeholder_pos[:, 0], placeholder_pos[:, 1] + 1] = adained_total_embedding[:end_index,1,:]
return embedded_text, other_return_dict
def load(self, ckpt_path):
ckpt = torch.load(ckpt_path, map_location='cuda')
if ckpt.get("name_projection_layer") is not None:
self.name_projection_layer = ckpt.get("name_projection_layer").float()
print('[Embedding Manager] weights loaded.')
def save(self, ckpt_path):
save_dict = {}
save_dict["name_projection_layer"] = self.name_projection_layer
torch.save(save_dict, ckpt_path)
def trainable_projection_parameters(self):
trainable_list = []
trainable_list.extend(list(self.name_projection_layer.parameters()))
return trainable_list
class Embedding_discriminator(nn.Module):
def __init__(self, input_size, dropout_rate):
super(Embedding_discriminator, self).__init__()
self.input_size = input_size
self.fc1 = nn.Linear(input_size, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 1)
self.LayerNorm1 = nn.LayerNorm(512)
self.LayerNorm2 = nn.LayerNorm(256)
self.leaky_relu = nn.LeakyReLU(0.2)
self.dropout_rate = dropout_rate
if self.dropout_rate > 0:
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
def forward(self, input):
x = input.view(-1, self.input_size)
if self.dropout_rate > 0:
x = self.leaky_relu(self.dropout1(self.fc1(x)))
else:
x = self.leaky_relu(self.fc1(x))
if self.dropout_rate > 0:
x = self.leaky_relu(self.dropout2(self.fc2(x)))
else:
x = self.leaky_relu(self.fc2(x))
x = self.fc3(x)
return x
def save(self, ckpt_path):
save_dict = {}
save_dict["fc1"] = self.fc1
save_dict["fc2"] = self.fc2
save_dict["fc3"] = self.fc3
save_dict["LayerNorm1"] = self.LayerNorm1
save_dict["LayerNorm2"] = self.LayerNorm2
save_dict["leaky_relu"] = self.leaky_relu
save_dict["dropout1"] = self.dropout1
save_dict["dropout2"] = self.dropout2
torch.save(save_dict, ckpt_path)
def load(self, ckpt_path):
ckpt = torch.load(ckpt_path, map_location='cuda')
if ckpt.get("first_name_proj_layer") is not None:
self.fc1 = ckpt.get("fc1").float()
self.fc2 = ckpt.get("fc2").float()
self.fc3 = ckpt.get("fc3").float()
self.LayerNorm1 = ckpt.get("LayerNorm1").float()
self.LayerNorm2 = ckpt.get("LayerNorm2").float()
self.leaky_relu = ckpt.get("leaky_relu").float()
self.dropout1 = ckpt.get("dropout1").float()
self.dropout2 = ckpt.get("dropout2").float()
print('[Embedding D] weights loaded.')
|