wangqinghehe's picture
0515_first_upload
3ab16a9
raw
history blame
2.11 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import kornia
from einops import rearrange
import torch.nn.init as init
def leaky_relu(p=0.2):
return nn.LeakyReLU(p, inplace=True)
class Residual(nn.Module):
def __init__(self,
fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return x + self.fn(x, **kwargs)
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, lr_mul=1, bias=True, pre_norm=False, activate = False):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim))
self.lr_mul = lr_mul
self.pre_norm = pre_norm
if pre_norm:
self.norm = nn.LayerNorm(in_dim, eps=1e-5)
self.activate = activate
if self.activate == True:
self.non_linear = leaky_relu()
def forward(self, input):
if hasattr(self, 'pre_norm') and self.pre_norm:
out = self.norm(input)
out = F.linear(out, self.weight * self.lr_mul, bias=self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.lr_mul, bias=self.bias * self.lr_mul)
if self.activate == True:
out = self.non_linear(out)
return out
class StyleVectorizer(nn.Module):
def __init__(self, dim_in, dim_out, depth, lr_mul = 0.1):
super().__init__()
layers = []
for i in range(depth):
if i == 0:
layers.extend([EqualLinear(dim_in, dim_out, lr_mul, pre_norm=False, activate = True)])
elif i == depth - 1:
layers.extend([EqualLinear(dim_out, dim_out, lr_mul, pre_norm=True, activate = False)])
else:
layers.extend([Residual(EqualLinear(dim_out, dim_out, lr_mul, pre_norm=True, activate = True))])
self.net = nn.Sequential(*layers)
self.norm = nn.LayerNorm(dim_out, eps=1e-5)
def forward(self, x):
return self.norm(self.net(x))